A Model-Driven Approach for the Failure Data Analysis of Multiple Repairable Systems Without Information on Individual Sequences

2013 ◽  
Vol 62 (3) ◽  
pp. 700-713 ◽  
Author(s):  
Gianpaolo Pulcini
Author(s):  
Rommel Estores ◽  
Pascal Vercruysse ◽  
Karl Villareal ◽  
Eric Barbian ◽  
Ralph Sanchez ◽  
...  

Abstract The failure analysis community working on highly integrated mixed signal circuitry is entering an era where simultaneously System-On-Chip technologies, denser metallization schemes, on-chip dissipation techniques and intelligent packages are being introduced. These innovations bring a great deal of defect accessibility challenges to the failure analyst. To contend in this era while aiming for higher efficiency and effectiveness, the failure analysis environment must undergo a disruptive evolution. The success or failure of an analysis will be determined by the careful selection of tools, data and techniques in the applied analysis flow. A comprehensive approach is required where hardware, software, data analysis, traditional FA techniques and expertise are complementary combined [1]. This document demonstrates this through the incorporation of advanced scan diagnosis methods in the overall analysis flow for digital functionality failures and supporting the enhanced failure analysis methodology. For the testing and diagnosis of the presented cases, compact but powerful scan test FA Lab hardware with its diagnosis software was used [2]. It can therefore easily be combined with the traditional FA techniques to provide stimulus for dynamic fault localizations [3]. The system combines scan chain information, failure data and layout information into one viewing environment which provides real analysis power for the failure analyst. Comprehensive data analysis is performed to identify failing cells/nets, provide a better overview of the failure and the interactions to isolate the fault further to a smaller area, or to analyze subtle behavior patterns to find and rationalize possible faults that are otherwise not detected. Three sample cases will be discussed in this document to demonstrate specific strengths and advantages of this enhanced FA methodology.


Author(s):  
Christoph Rieger ◽  
Daniel Lucrédio ◽  
Renata Pontin M. Fortes ◽  
Herbert Kuchen ◽  
Felipe Dias ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2554
Author(s):  
Yoel Arroyo ◽  
Ana I. Molina ◽  
Miguel A. Redondo ◽  
Jesús Gallardo

This paper introduces Learn-CIAM, a new model-based methodological approach for the design of flows and for the semi-automatic generation of tools in order to support collaborative learning tasks. The main objective of this work is to help professors by establishing a series of steps for the specification of their learning courses and the obtaining of collaborative tools to support certain learning activities (in particular, for in-group editing, searching and modeling). This paper presents a complete methodological framework, how it is supported conceptually and technologically, and an application example. So to guarantee the validity of the proposal, we also present some validation processes with potential designers and users from different profiles such as Education and Computer Science. The results seem to demonstrate a positive reception and acceptance, concluding that its application would facilitate the design of learning courses and the generation of collaborative learning tools for professionals of both profiles.


Sign in / Sign up

Export Citation Format

Share Document