Temporal Knowledge Graph Embedding for Effective Service Recommendation

Author(s):  
Haithem Mezni
Author(s):  
A-Yeong Kim ◽  
◽  
Hee-Guen Yoon ◽  
Seong-Bae Park ◽  
Se-Young Park ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Author(s):  
Wei Song ◽  
Jingjin Guo ◽  
Ruiji Fu ◽  
Ting Liu ◽  
Lizhen Liu

2021 ◽  
pp. 107181
Author(s):  
Yao Chen ◽  
Jiangang Liu ◽  
Zhe Zhang ◽  
Shiping Wen ◽  
Wenjun Xiong

2021 ◽  
Author(s):  
Shensi Wang ◽  
Kun Fu ◽  
Xian Sun ◽  
Zequn Zhang ◽  
Shuchao Li ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. 155014772110090
Author(s):  
Yuanyi Chen ◽  
Yanyun Tao ◽  
Zengwei Zheng ◽  
Dan Chen

While it is well understood that the emerging Social Internet of Things offers the capability of effectively integrating and managing massive heterogeneous IoT objects, it also presents new challenges for suggesting useful objects with certain service for users due to complex relationships in Social Internet of Things, such as user’s object usage pattern and various social relationships among Social Internet of Things objects. In this study, we focus on the problem of service recommendation in Social Internet of Things, which is very important for many applications such as urban computing, smart cities, and health care. We propose a graph-based service recommendation framework by jointly considering social relationships of heterogeneous objects in Social Internet of Things and user’s preferences. More exactly, we learn user’s preference from his or her object usage events with a latent variable model. Then, we model users, objects, and their relationships with a knowledge graph and regard Social Internet of Things service recommendation as a knowledge graph completion problem, where the “like” property that connects users to services needs to be predicted. To demonstrate the utility of the proposed model, we have built a Social Internet of Things testbed to validate our approach and the experimental results demonstrate its feasibility and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document