Minimizing Convolutional Neural Network Training Data with Proper Data Augmentation for Inline Defect Classification

Author(s):  
Akihiro Fujishiro ◽  
Yoshikazu Nagamura ◽  
Tatsuya Usami ◽  
Masao Inoue
Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2020 ◽  
Vol 12 (5) ◽  
pp. 1-15
Author(s):  
Zhenghao Han ◽  
Li Li ◽  
Weiqi Jin ◽  
Xia Wang ◽  
Gangcheng Jiao ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 1494-1505
Author(s):  
Hyo-Hun Kim ◽  
Byung-Woo Hong

In this work, we present an image segmentation algorithm based on the convolutional neural network framework where the scale space theory is incorporated in the course of training procedure. The construction of data augmentation is designed to apply the scale space to the training data in order to effectively deal with the variability of regions of interest in geometry and appearance such as shape and contrast. The proposed data augmentation algorithm via scale space is aimed to improve invariant features with respect to both geometry and appearance by taking into consideration of their diffusion process. We develop a segmentation algorithm based on the convolutional neural network framework where the network architecture consists of encoding and decoding substructures in combination with the data augmentation scheme via the scale space induced by the heat equation. The quantitative analysis using the cardiac MRI dataset indicates that the proposed algorithm achieves better accuracy in the delineation of the left ventricles, which demonstrates the potential of the algorithm in the application of the whole heart segmentation as a compute-aided diagnosis system for the cardiac diseases.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012008
Author(s):  
Sunil Pandey ◽  
Naresh Kumar Nagwani ◽  
Shrish Verma

Abstract The convolutional neural network training algorithm has been implemented for a central processing unit based high performance multisystem architecture machine. The multisystem or the multicomputer is a parallel machine model which is essentially an abstraction of distributed memory parallel machines. In actual practice, this model corresponds to high performance computing clusters. The proposed implementation of the convolutional neural network training algorithm is based on modeling the convolutional neural network as a computational pipeline. The various functions or tasks of the convolutional neural network pipeline have been mapped onto the multiple nodes of a central processing unit based high performance computing cluster for task parallelism. The pipeline implementation provides a first level performance gain through pipeline parallelism. Further performance gains are obtained by distributing the convolutional neural network training onto the different nodes of the compute cluster. The two gains are multiplicative. In this work, the authors have carried out a comparative evaluation of the computational performance and scalability of this pipeline implementation of the convolutional neural network training with a distributed neural network software program which is based on conventional multi-model training and makes use of a centralized server. The dataset considered for this work is the North Eastern University’s hot rolled steel strip surface defects imaging dataset. In both the cases, the convolutional neural networks have been trained to classify the different defects on hot rolled steel strips on the basis of the input image. One hundred images corresponding to each class of defects have been used for the training in order to keep the training times manageable. The hyperparameters of both the convolutional neural networks were kept identical and the programs were run on the same computational cluster to enable fair comparison. Both the convolutional neural network implementations have been observed to train to nearly 80% training accuracy in 200 epochs. In effect, therefore, the comparison is on the time taken to complete the training epochs.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fahad Alharbi ◽  
Khalil El Hindi ◽  
Saad Al Ahmadi ◽  
Hussien Alsalamn

Noise in training data increases the tendency of many machine learning methods to overfit the training data, which undermines the performance. Outliers occur in big data as a result of various factors, including human errors. In this work, we present a novel discriminator model for the identification of outliers in the training data. We propose a systematic approach for creating training datasets to train the discriminator based on a small number of genuine instances (trusted data). The noise discriminator is a convolutional neural network (CNN). We evaluate the discriminator’s performance using several benchmark datasets and with different noise ratios. We inserted random noise in each dataset and trained discriminators to clean them. Different discriminators were trained using different numbers of genuine instances with and without data augmentation. We compare the performance of the proposed noise-discriminator method with seven other methods proposed in the literature using several benchmark datasets. Our empirical results indicate that the proposed method is very competitive to the other methods. It actually outperforms them for pair noise.


Sign in / Sign up

Export Citation Format

Share Document