Global Consensus of Multiagent Systems With Internal Delays and Communication Delays

2019 ◽  
Vol 49 (10) ◽  
pp. 1961-1970 ◽  
Author(s):  
Wei Qian ◽  
Yanshan Gao ◽  
Yi Yang
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Wei Qian ◽  
Lei Wang

This paper addresses the global consensus of nonlinear multiagent systems with asymmetrically coupled identical agents. By employing a Lyapunov function and graph theory, a sufficient condition is presented for the global exponential consensus of the multiagent system. The analytical result shows that, for a weakly connected communication graph, the algebraic connectivity of a redefined symmetric matrix associated with the directed graph is used to evaluate the global consensus of the multiagent system with nonlinear dynamics under the common linear consensus protocol. The presented condition is quite simple and easily verified, which can be effectively used to design consensus protocols of various weighted and directed communications. A numerical simulation is also given to show the effectiveness of the analytical result.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiliu Jiang ◽  
Lianghao Ji ◽  
Xingcheng Pu ◽  
Qun Liu

Group consensus seeking is investigated for a class of discrete-time heterogeneous multiagent systems composed of first-order and second-order agents with both communication and input time delays. Considering two types of system topologies, novel protocols based on the competitive and cooperative relationships among the agents are presented, respectively. By matrix theory and frequency domain analysis method, the sufficient conditions solving consensus problem are obtained. The results show that the achievement of group consensus is bound up with the input time delays, coupling weights between the agents and the system’s control parameters, but it is irrelevant to the communication delays. Finally, numerical simulations are presented to illustrate the correctness of the theoretical results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lianghao Ji ◽  
Yue Zhang ◽  
Yiliu Jiang

This paper discusses the couple-group consensus issues of a class of heterogeneous multiagent systems containing first-order and second-order dynamic agents under the influence of both input and communication delays. In distinction to the existing works, a novel distributed coordination control protocol is proposed which is not only on the foundation of the competitive interaction between the agents but also has no virtual velocity estimation in the first-order dynamics. Furthermore, without the restrictive assumptions existing commonly in the related works, several sufficient algebraic criteria are established for the heterogeneous systems to realize couple-group consensus asymptotically. The obtained conclusions show that the achievement of the systems’ couple-group consensus intimately relates to the coupling weights between the agents, the systems control parameters, and the input time delays of the agents, while communication time delays between the agents are irrelevant to it. Finally, several simulations are illustrated to verify the effectiveness of the obtained theoretical results.


2020 ◽  
Vol 50 (7) ◽  
pp. 2916-2925 ◽  
Author(s):  
Chao Deng ◽  
Meng Joo Er ◽  
Guang-Hong Yang ◽  
Ning Wang

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Xue Li ◽  
Huai Wu ◽  
Yikang Yang

This paper focuses on the consensus problem of high-order heterogeneous multiagent systems with arbitrarily bounded communication delays. Through the method of nonnegative matrices, we get a sufficient consensus condition for the systems with dynamically changing topology. The results of this paper show, even when there are arbitrarily bounded communication delays in the systems, all agents can reach a consensus no matter whether there are spanning trees for the corresponding communication graphs at any time.


Sign in / Sign up

Export Citation Format

Share Document