scholarly journals Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration

2012 ◽  
Vol 60 (2) ◽  
pp. 968-973 ◽  
Author(s):  
Nelly Pustelnik ◽  
Jean-Christophe Pesquet ◽  
Caroline Chaux
Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. A55-A59 ◽  
Author(s):  
A. J. Berkhout ◽  
D. J. Verschuur

Interpolation of data beyond aliasing limits and removal of noise that occurs within the seismic bandwidth are still important problems in seismic processing. The focal transform is introduced as a promising tool in data interpolation and noise removal, allowing the incorporation of macroinformation about the involved wavefields. From a physical point of view, the principal action of the forward focal operator is removing the spatial phase of the signal content from the input data, and the inverse focal operator restores what the forward operator has removed. The strength of the method is that in the transformed domain, the focused signals at the focal area can be separated from the dispersed noise away from the focal area. Applications of particular interest in preprocessing are interpolation of missing offsets and reconstruction of signal beyond aliasing. The latter can be seen as the removal of aliasing noise.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Muhammad Aslam Noor ◽  
Zhenyu Huang

It is well known that the mixed variational inequalities are equivalent to the fixed point problem. We use this alternative equivalent formulation to suggest some new proximal point methods for solving the mixed variational inequalities. These new methods include the explicit, the implicit, and the extragradient method as special cases. The convergence analysis of these new methods is considered under some suitable conditions. Our method of constructing these iterative methods is very simple. Results proved in this paper may stimulate further research in this direction.


NeuroImage ◽  
1998 ◽  
Vol 8 (4) ◽  
pp. 340-349 ◽  
Author(s):  
Xavier Descombes ◽  
Frithjof Kruggel ◽  
D.Yves von Cramon

2019 ◽  
Vol 27 (3) ◽  
pp. 317-340 ◽  
Author(s):  
Max Kontak ◽  
Volker Michel

Abstract In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90  of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.


Sign in / Sign up

Export Citation Format

Share Document