A Distributed Control Scheme of Thermostatically Controlled Loads for the Building-Microgrid Community

2020 ◽  
Vol 11 (1) ◽  
pp. 350-360 ◽  
Author(s):  
Yu Wang ◽  
Yi Tang ◽  
Yan Xu ◽  
Yinliang Xu
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shiming Chen ◽  
Kaiqiang Li

The development of power energy structures and information communication technology has promoted the renewal of smart grid information-physical structures. At the same time, the changes in the smart grid energy structure and the vulnerability of the information network threaten the stability of the power system and uses multiagent control theory to improve the transient stability of the power grid which has strong practicability. In this paper, an optimized distributed control scheme is proposed for application to the smart grid model so that the grid system can flexibly adapt to the external operating conditions and recover to stable operating conditions after being disturbed. In this paper, an intelligent power grid information-physical network simulation system is established. According to the information exchange within the multiagent system, groups of coherent generators in the disturbed power grid in different regions are identified and controlled. Distributed control is applied to maintain the exponential frequency synchronization and phase angle aggregation of the synchronous generators to achieve transient stability. Finally, the effectiveness and rapidity of the proposed distributed optimal control scheme are verified by simulation analysis of the IEEE 39 node model.


2017 ◽  
Vol 11 (17) ◽  
pp. 4193-4201 ◽  
Author(s):  
Hua Han ◽  
Hao Wang ◽  
Yao Sun ◽  
Jian Yang ◽  
Zhangjie Liu

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Chao-Tsung Ma ◽  
Zong-Hann Shi

As the penetration of renewable energy power generation, such as wind power generation, increases low-voltage ride-through (LVRT), control is necessary during grid faults to support wind turbine generators (WTGs) in compensating reactive current to restore nominal grid voltages, and maintain a desired system stability. In contrast to the commonly used centralized LVRT controller, this study proposes a distributed control scheme using a LVRT compensator (LVRTC) capable of simultaneously performing reactive current compensation for doubly-fed induction generator (DFIG)-, or permanent magnet synchronous generator (PMSG)-based WTGs. The proposed LVRTC using silicon carbide (SiC)-based inverters can achieve better system efficiency, and increase system reliability. The proposed LVRTC adopts a digital control scheme and dq-axis current decoupling algorithm to realize simultaneous active/reactive power control features. Theoretical analysis, derivation of mathematical models, and design of the control scheme are initially conducted, and simulation is then performed in a computer software environment to validate the feasibility of the system. Finally, a 2 kVA small-scale hardware system with TI’s digital signal processor (DSP) as the control core is implemented for experimental verification. Results from simulation and implementation are in close agreement, and validate the feasibility and effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document