Particle Swarm Optimization-Based Distributed Control Scheme for Flocking Robots

Author(s):  
Seung-Mok Lee ◽  
Hyun Myung
Author(s):  
Minh Y Nguyen

AbstractRecently, the voltage stability and control of distribution networks become challenges due to the large line impedance, load variations and particularly the presence of distributed generation. This paper presents a coordinated voltage control scheme of distribution systems with distributed generation based on on-load tap changer and shunt capacitors. The problem is to determine the optimal operation of voltage regulation devices to minimize a multi-objective function including power losses, voltage deviations and operation stresses while subject to the allowable voltage ranges, line capacity and switching stresses, etc. The problem is formulated and solved by a modified particle swarm optimization algorithm to treat the large-scale and high nonlinearity property. The proposed scheme is applied to a typical 48-bus distribution network in Vietnam. The result of simulation shows that the voltage profile can be improved while the power loss of distribution systems can be reduced significantly.


2014 ◽  
Vol 8 (1) ◽  
pp. 240-244 ◽  
Author(s):  
Songdong Xue ◽  
Chaoli Sun ◽  
Jianchao Zeng ◽  
Yaochu Jin ◽  
Ran Cheng

Interactions in swarm robotic search are explored for intelligence emergence based on Extended Particle Swarm Optimization (EPSO) model. For this end, the best combination of proper properties in typical versions of PSO is transferred to swarm robotic search. Synchronous / asynchronous communication modes and respective control strategies under conditions of parallel distributed control are comparatively studied by simulations. The results showed that the asynchronous communication mode predominates over its synchronous opponent in efficiency.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3516 ◽  
Author(s):  
Abdelbasset Krama ◽  
Laid Zellouma ◽  
Boualaga Rabhi ◽  
Shady Refaat ◽  
Mansour Bouzidi

This paper proposes a high performance control scheme for a double function grid-tied double-stage PV system. It is based on model predictive power control with space vector modulation. This strategy uses a discrete model of the system based on the time domain to generate the average voltage vector at each sampling period, with the aim of canceling the errors between the estimated active and reactive power values and their references. Also, it imposes a sinusoidal waveform of the current at the grid side, which allows active power filtering without a harmonic currents identification phase. The latter attempts to reduce the size and cost of the system as well as providing better performance. In addition, it can be implemented in a low-cost control platform due to its simplicity. A double-stage PV system is selected due to its flexibility in control, unlike single-stage strategies. Sliding mode control-based particle swarm optimization (PSO) is used to track the maximum power of the PV system. It offers high accuracy and good robustness. Concerning DC bus voltage of the inverter, the anti-windup PI controller is tuned offline using the particle swarm optimization algorithm to deliver optimal performance in DC bus voltage regulation. The overall system has been designed and validated in an experimental prototype; the obtained results in different phases demonstrate the higher performance and the better efficiency of the proposed system in terms of power quality enhancement and PV power injection.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document