scholarly journals Wave Speeds and Green’s Tensors for Shear Wave Propagation in Incompressible, Hyperelastic Materials with Uniaxial Stretch

Author(s):  
Ned C. Rouze ◽  
Annette Caenen ◽  
Kathryn R. Nightingale
2021 ◽  
Author(s):  
Jonathon Blank ◽  
Darryl Thelen ◽  
Matthew S. Allen ◽  
Joshua Roth

The use of shear wave propagation to noninvasively gauge material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue’s composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers’ toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Zuoxian Hou ◽  
Ruth J. Okamoto ◽  
Philip V. Bayly

Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.


2021 ◽  
Author(s):  
Marjan Razani

In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE). Shear waves were generated using a 20 MHz piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs 14%, respectively). Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. The shear wave speeds for the 14% and 8% gelatin-titanium dioxide phantoms were 2.24 0.06 m/s and 1.49 0.05 m/s and also the shear modulus estimated using SW-OCE was 5.3±0.2 kPa and 2.3±0.1 kPa for the 14% and 8% gelatin-titanium dioxide phantoms, respectively. The results demonstrate the feasibility of this technique for measuring the mechanical properties of tissue.


2021 ◽  
Vol 9 ◽  
Author(s):  
Johannes Aichele ◽  
Stefan Catheline

In shear wave elastography, rotational wave speeds are converted to elasticity measures using elastodynamic theory. The method has a wide range of applications and is the gold standard for non-invasive liver fibrosis detection. However, the observed shear wave dispersion of in vivo human liver shows a mismatch with purely elastic and visco-elastic wave propagation theory. In a laboratory phantom experiment we demonstrate that porosity and fluid viscosity need to be considered to properly convert shear wave speeds to elasticity in soft porous materials. We extend this conclusion to the clinical application of liver stiffness characterization by revisiting in vivo studies of liver elastography. To that end we compare Biot’s theory of poro-visco-elastic wave propagation to Voigt’s visco-elastic model. Our results suggest that accounting for dispersion due to fluid viscosity could improve shear wave imaging in the liver and other highly vascularized organs.


2021 ◽  
Author(s):  
Marjan Razani

In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE). Shear waves were generated using a 20 MHz piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs 14%, respectively). Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. The shear wave speeds for the 14% and 8% gelatin-titanium dioxide phantoms were 2.24 0.06 m/s and 1.49 0.05 m/s and also the shear modulus estimated using SW-OCE was 5.3±0.2 kPa and 2.3±0.1 kPa for the 14% and 8% gelatin-titanium dioxide phantoms, respectively. The results demonstrate the feasibility of this technique for measuring the mechanical properties of tissue.


2000 ◽  
Vol 105 (B9) ◽  
pp. 21543-21557 ◽  
Author(s):  
John C. Castle ◽  
Kenneth C. Creager ◽  
John P. Winchester ◽  
Rob D. van der Hilst
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document