Millimeter-Wave V2V Communications with Cooperative Perception for Automated Driving

Author(s):  
Ryuichi Fukatsu ◽  
Kei Sakaguchi
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2659
Author(s):  
Ryuichi Fukatsu ◽  
Kei Sakaguchi

The combination of onboard sensors on vehicles with wireless communication has great advantages over the conventional driving systems in terms of safety and reliability. This technique is often called cooperative perception. Cooperative perception is expected to compensate for blind spots in dynamic maps, which are caused by obstacles. Few blind spots in dynamic maps can improve the safety and reliability of driving thanks to the additional information beyond the sensing of the onboard sensors. In this paper, we analyzed the required sensor data rate to be exchanged for the cooperative perception in order to enable a new level of safe and reliable automated driving in overtaking scenario. The required sensor data rate was calculated by the combination of recognition and vehicle movement to adopt realistic assumptions. In the end of the paper, we compared the required sensor data rate with the outage data rate realized by the conventional V2V communication and millimeter-wave communication. The results showed the indispensability of millimeter-wave communications in automated driving systems.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5854
Author(s):  
Ryuichi Fukatsu ◽  
Kei Sakaguchi

The development of automated driving is actively progressing, and connected cars are also under development. Connected cars are the technology of connecting vehicles to networks so that connected vehicles can enhance their services. Safety services are among the main services expected in connected car society. Cooperative perception belongs to safety services and improves safety by visualizing blind spots. This visualization is achieved by sharing sensor data via wireless communications. Therefore, the number of visualized blind spots highly depends upon the performance of wireless communications. In this paper, we analyzed the required sensor data rate to be shared for the cooperative perception in order to realize safe and reliable automated driving in an intersection scenario. The required sensor data rate was calculated by the combination of recognition and crossing decisions of an automated driving vehicle to adopt realistic assumptions. In this calculation, CVFH was used to derive tight requirements, and the minimum required braking aims to alleviate the traffic congestion around the intersection. At the end of the paper, we compare the required sensor data rate with the outage data rate realized by conventional and millimeter-wave communications, and show that millimeter-wave communications can support safe crossing at a realistic velocity.


Sign in / Sign up

Export Citation Format

Share Document