SoFA: Source-data-free Feature Alignment for Unsupervised Domain Adaptation

Author(s):  
Hao-Wei Yeh ◽  
Baoyao Yang ◽  
Pong C. Yuen ◽  
Tatsuya Harada
2021 ◽  
Author(s):  
Wanxia Deng ◽  
Yawen Cui ◽  
Zhen Liu ◽  
Gangyao Kuang ◽  
Dewen Hu ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Tao Chen ◽  
Shuihua Wang ◽  
Qiong Wang ◽  
Zheng Zhang ◽  
Guosen Xie ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Tiejun Yang ◽  
Xiaojuan Cui ◽  
Xinhao Bai ◽  
Lei Li ◽  
Yuehong Gong

BACKGROUND: Convolutional neural network has achieved a profound effect on cardiac image segmentation. The diversity of medical imaging equipment brings the challenge of domain shift for cardiac image segmentation. OBJECTIVE: In order to solve the domain shift existed in multi-modality cardiac image segmentation, this study aims to investigate and test an unsupervised domain adaptation network RA-SIFA, which combines a parallel attention module (PAM) and residual attention unit (RAU). METHODS: First, the PAM is introduced in the generator of RA-SIFA to fuse global information, which can reduce the domain shift from the respect of image alignment. Second, the shared encoder adopts the RAU, which has residual block based on the spatial attention module to alleviate the problem that the convolution layer is insensitive to spatial position. Therefore, RAU enables to further reduce the domain shift from the respect of feature alignment. RA-SIFA model can realize the unsupervised domain adaption (UDA) through combining the image and feature alignment, and then solve the domain shift of cardiac image segmentation in a complementary manner. RESULTS: The model is evaluated using MM-WHS2017 datasets. Compared with SIFA, the Dice of our new RA-SIFA network is improved by 8.4%and 3.2%in CT and MR images, respectively, while, the average symmetric surface distance (ASD) is reduced by 3.4 and 0.8mm in CT and MR images, respectively. CONCLUSION: The study results demonstrate that our new RA-SIFA network can effectively improve the accuracy of whole-heart segmentation from CT and MR images.


Author(s):  
Jun Wen ◽  
Risheng Liu ◽  
Nenggan Zheng ◽  
Qian Zheng ◽  
Zhefeng Gong ◽  
...  

Unsupervised domain adaptation methods aim to alleviate performance degradation caused by domain-shift by learning domain-invariant representations. Existing deep domain adaptation methods focus on holistic feature alignment by matching source and target holistic feature distributions, without considering local features and their multi-mode statistics. We show that the learned local feature patterns are more generic and transferable and a further local feature distribution matching enables fine-grained feature alignment. In this paper, we present a method for learning domain-invariant local feature patterns and jointly aligning holistic and local feature statistics. Comparisons to the state-of-the-art unsupervised domain adaptation methods on two popular benchmark datasets demonstrate the superiority of our approach and its effectiveness on alleviating negative transfer.


Sign in / Sign up

Export Citation Format

Share Document