A neural-based adaptive control method study on a class of nonaffine nonlinear systems

Author(s):  
Jinhua Wu ◽  
Hongxing Liu ◽  
Jing Tang
2013 ◽  
Vol 45 (12) ◽  
pp. 2490-2498 ◽  
Author(s):  
Ahsene Boubakir ◽  
Salim Labiod ◽  
Fares Boudjema ◽  
Franck Plestan

Author(s):  
Hui Hu ◽  
Yang Li ◽  
Wei Yi ◽  
Yuebiao Wang ◽  
Fan Qu ◽  
...  

In the paper, an event triggering adaptive control method based on neural network (NN) is proposed for a class of uncertain nonlinear systems with external disturbances. In order to reduce the network resource utilization, a novel event-triggered condition by the Lyapunov approach is proposed. In addition, the NN controller and adaptive parameters determined by the Lyapunov stability method are updated only at triggered instants to reduce the amount of calculation. Only one NN is used as the controller in the entire system. The stability analysis results of the closed-loop system are obtained by the Lyapunov approach, which shows that all the signals in the systems with bounded disturbance are semi-globally bounded. Zeno behavior is avoided. Finally, the analytical design is confirmed by the simulation results on a two-link robotic manipulator.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4675 ◽  
Author(s):  
Xiaohuan Lai ◽  
Haipeng Pan ◽  
Xinlong Zhao

An adaptive control scheme is proposed for a class of uncertain pure-feedback nonlinear systems preceded by asymmetric hysteresis nonlinearity. The asymmetric property is described by the modified Bouc-Wen model based on the proposed asymmetric factor. State variables in the controller design are directly replaced with nonaffine functions to address the control problem caused by nonaffine appearance. Moreover, the control method can handle systems with external disturbances and guarantee the global stability of all the signals in the closed-loop system. The feasibility of the control scheme is verified by a simulation example and experimental results.


Sign in / Sign up

Export Citation Format

Share Document