A Genetic Algorithm for Solving Dynamic Scheduling Problems in Distributed Manufacturing Systems

Author(s):  
Yanhong Wang ◽  
Lixin Yan ◽  
Hongyu Zhu ◽  
Chaowan Yin
Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 249
Author(s):  
Xiaohui Zhang ◽  
Yuyan Han ◽  
Grzegorz Królczyk ◽  
Marek Rydel ◽  
Rafal Stanislawski ◽  
...  

This study attempts to explore the dynamic scheduling problem from the perspective of operational research optimization. The goal is to propose a rescheduling framework for solving distributed manufacturing systems that consider random machine breakdowns as the production disruption. We establish a mathematical model that can better describe the scheduling of the distributed blocking flowshop. To realize the dynamic scheduling, we adopt an “event-driven” policy and propose a two-stage “predictive-reactive” method consisting of two steps: initial solution pre-generation and rescheduling. In the first stage, a global initial schedule is generated and considers only the deterministic problem, i.e., optimizing the maximum completion time of static distributed blocking flowshop scheduling problems. In the second stage, that is, after the breakdown occurs, the rescheduling mechanism is triggered to seek a new schedule so that both maximum completion time and the stability measure of the system can be optimized. At the breakdown node, the operations of each job are classified and a hybrid rescheduling strategy consisting of “right-shift repair + local reorder” is performed. For local reorder, we designed a discrete memetic algorithm, which embeds the differential evolution concept in its search framework. To test the effectiveness of DMA, comparisons with mainstream algorithms are conducted on instances with different scales. The statistical results show that the ARPDs obtained from DMA are improved by 88%.


2009 ◽  
Vol 16-19 ◽  
pp. 743-747
Author(s):  
Yu Wu ◽  
Xin Cun Zhuang ◽  
Cong Xin Li

Solve the flexible dynamic scheduling problem by using “dynamic management & static scheduling” method. Aim at the property of flexible Manufacturing systems, the dynamic scheduling methods are analyzed and a coding method based on working procedure is improved in this paper. Thus it can be efficiently solve the problem of multiple working routes selection under the active distribution principle. On the other hand, the self-adaptive gene is provided and the parameters of the genetic algorithm are defined. In such a solution, the scheduling is confirmed to be simple and efficient.


Sign in / Sign up

Export Citation Format

Share Document