Smooth state feedback stabilization for a class of planar switched nonlinear systems under arbitrary switching

Author(s):  
Xiangze Lin ◽  
Shuaiting Huang ◽  
Chunjiang Qian ◽  
Shihua Li
2010 ◽  
Vol 15 (1) ◽  
pp. 39-53 ◽  
Author(s):  
L. Liu ◽  
N. Duan

This paper investigates the problem of globally asymptotically stable in probability by state-feedback for a class of stochastic high-order nonlinear systems with a ratio of odd integers power. By extending the adding a power integrator technique and choosing an appropriate Lyapunov function, a linear smooth state-feedback controller is explicitly constructed to render the system globally asymptotically stable in probability. Furthermore, we address the problem of state-feedback inverse optimal stabilization in probability. A simulation example is provided to show the effectiveness of the proposed approach.


2021 ◽  
pp. 107754632098598
Author(s):  
Marwen Kermani ◽  
Anis Sakly

This study is concerned with the stability analysis and the feedback stabilization problems for a class of uncertain switched nonlinear systems with multiple time-varying delays. Unusually, more general time delays, which depend on the subsystem number, are considered. In this regard, by constructing a novel common Lyapunov function, using the aggregation techniques and the Borne and Gentina criterion, new algebraic stability and feedback stabilization conditions under arbitrary switching are derived. The proposed results are explicit and obtained without searching a common Lyapunov function through the linear matrix inequalities approach, considered a difficult matter in this case. At last, two numerical simulation examples are shown to prove the practical utility of the suggested approach.


Sign in / Sign up

Export Citation Format

Share Document