Optimal sensing time of soft decision cooperative spectrum sensing in cognitive radio networks

Author(s):  
Dafei Sun ◽  
Tiecheng Song ◽  
Ming Wu ◽  
Jing Hu ◽  
Jie Guo ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
H. F. Al-Doseri ◽  
M. A. Mangoud

One of the main challenges in cognitive radio networks is the ability of secondary users to detect the primary user presence with high probability of detection. In previous research, optimizing cooperative sensing in cognitive radio networks is performed for either a targeted probability of detection or a false alarm. After setting one of the probabilities as an optimization constraint, the other is optimized. In this paper, a guaranteed constant throughput at the secondary users is introduced as a target while optimizing probability of detection for cooperative sensing. Both sensing time values and number of cooperated cognitive radio secondary users are investigated to maximize the probability of detection of primary user. AND and OR hard decision schemes are considered and compared with soft decision scheme which is weighted modified deflection coefficient scheme (W-MDC). It is illustrated that cooperation of all users and utilizing full frames for sensing time will not provide maximum probability of detection. A tradeoff between performances of cognitive radio networks with and without optimization is presented. The effects of varying network sizes, normalized target throughput, maximum frame duration times, and received signal-to-noise ratio at the fusion center are investigated for different fusion rules.


Author(s):  
Haiyan Ye ◽  
Jiabao Jiang

AbstractThe lack of spectrum resources restricts the development of wireless communication applications. In order to solve the problems of low spectrum utilization and channel congestion caused by the static division of spectrum resource, this paper proposes an optimal linear weighted cooperative spectrum sensing for clustered-based cognitive radio networks. In this scheme, different weight values will be assigned for cooperative nodes according to the SNR of cognitive users and the historical sensing accuracy. In addition, the cognitive users can be clustered, and the users with the better channel characteristics will be selected as cluster heads for gathering the local sensing information. Simulation results show that the proposed scheme can obtain better sensing performance, improve the detection probability and reduce the error probability.


Author(s):  
Cadena Munoz Ernesto ◽  
Julian Andres Rodriguez Martinez ◽  
Luis Fernando Pedraza Martinez ◽  
Ingrid Patricia Paez Parra

Sign in / Sign up

Export Citation Format

Share Document