sensing time
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 84)

H-INDEX

19
(FIVE YEARS 6)

Author(s):  
Iyad Khalil Tumar ◽  
Adnan Mohammad Arar ◽  
Ayman Abd El Saleh

<p>Spectrum sensing in cognitive radio (CR) is a critical process as it directly influences the accuracy of detection. Noise uncertainty affects the reliability of detecting vacant holes in the spectrum, thus limiting the access of that spectrum by secondary users (SUs). In such uncertain environment; SUs sense the received power of a primary user (PU) independently with different measures of signal-to-noise ratio (SNR). Long sensing time serves in mitigating the effect of noise uncertainty, but on the cost of throughput performance of CR system. In this paper, the scheme of an asynchronous and crossed sensing-reporting is presented. The scheme reduces energy consumption during sensing process without affecting the detection accuracy. Exploiting the included idle time (𝑇𝑖) in sensing time slot; each SU collects power samples with higher SNR directly performs the reporting process to a fusion center (FC) consecutively. The FC terminates the sensing and reporting processes at a specific sensing time that corresponds to the lowest SNR (𝑆𝑁𝑅𝑤𝑎𝑙𝑙). Furthermore, this integrated scheme aims at optimizing the total frame duration (𝑇𝑓). Mathematical expressions of the scheme are obtained. Analytical results show the efficiency of the scheme in terms of energy saving and throughput increment under noise uncerainty.</p>


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8384
Author(s):  
Jun Wang ◽  
Weibin Jiang ◽  
Hongjun Wang ◽  
Yanwei Huang ◽  
Riqing Chen ◽  
...  

As part of an Internet of Things (IoT) framework, the Smart Grid (SG) relies on advanced communication technologies for efficient energy management and utilization. Cognitive Radio (CR), which allows Secondary Users (SUs) to opportunistically access and use the spectrum bands owned by Primary Users (PUs), is regarded as the key technology of the next-generation wireless communication. With the assistance of CR technology, the quality of communication in the SG could be improved. In this paper, based on a hybrid CR-enabled SG communication network, a new system architecture for multiband-CR-enabled SG communication is proposed. Then, some optimization mathematical models are also proposed to jointly find the optimal sensing time and the optimal power allocation strategy. By using convex optimization techniques, several optimal methods are proposed to maximize the data rate of multiband-CR-enabled SG while considering the minimum detection probabilities to the active PUs. Finally, simulations are presented to show the validity of the proposed methods.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Roberto U. Paiva ◽  
Sávio S. T. Oliveira ◽  
Luiz M. L. Pascoal ◽  
Leandro L. Parente ◽  
Wellington S. Martins

The increase in satellite launches into Earth's orbit in recent years has generated a huge amount of remote sensing data. These data, in the form of time series, have been used in automated classification approaches, generating land-use and land-cover (LULC) products for different landscapes around the world. Dynamic Time Warping (DTW) is a well-known computational method used to measure the similarity between time series. Tt has been used in many algorithms for remote sensing time series analysis. These DTW-based algorithms are capable of generating similarity measures between time series and patterns. These measures can be used as meta-features to increase the accuracy results of classification models. However, DTW-based algorithms require a lot of computational resources and have a high execution time, which makes them difficult to use in large volumes of data. This article presents a parallel and fully scalable solution to optimize the construction of meta-features through remote sensing time series (RSTS). In addition, results of the application of the generated meta-features in the training and evaluation of classification models using Random Forest are presented. The results show that the proposed approaches have led to improvements in execution time and accuracy when compared to traditional strategies.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7012
Author(s):  
Tian Yang ◽  
Moez Esseghir ◽  
Lyes Khoukhi ◽  
Su Pan

Energy efficiency (EE) is of great concern in cognitive radio networks since the throughput and energy consumption of secondary users (SUs) vary with the sensing time. However, the conditions of the detection probability and false alarm probability should be respected to better protect primary users (PUs) and to improve the sensing performance of SUs. Additionally, the PUs’ minimum averaged power provision should also be regarded as a key problem of interactive linking to SUs. Therefore, an integrated design between the PU and SUs is desired for the coordination of the whole cognitive radio system, especially regarding the satisfaction of EE and performance metrics. This study formulates sensing constraints in a unified way and calculates the minimum SNR of SUs, based on which the essential PU power provision is computed. Furthermore, EE is proved as a decreasing function with the PU’s active ratio, where the maximum EE is obtained corresponding to the minimum QoS requirements of the sensing process. Hence, a bisection-based method is proposed to maximize EE, which is considered as a concave function of SUs’ sensing time and has only one unique optimum. EE’s optimization was analyzed under different fusion rules for diverse SNR conditions. The optimum was also studied with sensing performance targets for various cases of PU power provision.


2021 ◽  
Author(s):  
Seva Ioussoufovitch ◽  
David Cohen ◽  
Daniel Milej ◽  
Mamadou Diop

Sign in / Sign up

Export Citation Format

Share Document