Fault tolerant multi-channel allocation scheme for wireless sensor networks

Author(s):  
Samira Chouikhi ◽  
Ines El Korbi ◽  
Yacine Ghamri-Doudane ◽  
Leila Azouz Saidane
2012 ◽  
Vol 35 (3) ◽  
pp. 504-517 ◽  
Author(s):  
Zhao-Liang ZHANG ◽  
Hai-Ming CHEN ◽  
Ting-Pei HUANG ◽  
Li CUI ◽  
Ze ZHAO

Author(s):  
Francis Franklin Marshall ◽  
M B Mu'azu ◽  
I J Umoh ◽  
A T Salawudeen ◽  
B O Sadiq ◽  
...  

In WSNs, the sensor nodes are at risk of failure and malicious attacks (selective forwarding). This may have a profound negative effect when you consider real-time WSNs, making them challenging to deploy. When there is a delay in tasks allocation execution processes in real-time WSNs because of sensor nodes failures, this will cause disastrous consequences if the systems are safety-critical, e.g. aircraft, nuclear power plant, forest fire detection, battlefield monitoring, thus the need to developed a real-time system that is fault-tolerable. This paper developed a modified real-time fault-tolerant task allocation scheme (mRFTAS) for WSNs (wireless sensor networks), using active replication techniques. mRFTAS and RFTAS performance were compared using time of execution of the task, network lifetime and reliability cost. The mRFTAS performance showed an improvement over that of RFTAS when it comes to reducing the time it takes for task execution by 45.56% and reliability cost of 7.99% while prolonging the network lifetime by 36.35%.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Sign in / Sign up

Export Citation Format

Share Document