The Implications of Interactional "Repair" for Human-Robot Interaction Design

Author(s):  
Luke Plurkowski ◽  
Maurice Chu ◽  
Erik Vinkhuyzen
AI & Society ◽  
2021 ◽  
Author(s):  
Nora Fronemann ◽  
Kathrin Pollmann ◽  
Wulf Loh

AbstractTo integrate social robots in real-life contexts, it is crucial that they are accepted by the users. Acceptance is not only related to the functionality of the robot but also strongly depends on how the user experiences the interaction. Established design principles from usability and user experience research can be applied to the realm of human–robot interaction, to design robot behavior for the comfort and well-being of the user. Focusing the design on these aspects alone, however, comes with certain ethical challenges, especially regarding the user’s privacy and autonomy. Based on an example scenario of human–robot interaction in elder care, this paper discusses how established design principles can be used in social robotic design. It then juxtaposes these with ethical considerations such as privacy and user autonomy. Combining user experience and ethical perspectives, we propose adjustments to the original design principles and canvass our own design recommendations for a positive and ethically acceptable social human–robot interaction design. In doing so, we show that positive user experience and ethical design may be sometimes at odds, but can be reconciled in many cases, if designers are willing to adjust and amend time-tested design principles.


Author(s):  
Shiyang Dong ◽  
Takafumi Matsumaru

AbstractThis paper shows a novel walking training system for foot-eye coordination. To design customizable trajectories for different users conveniently in walking training, a new system which can track and record the actual walking trajectories by a tutor and can use these trajectories for the walking training by a trainee is developed. We set the four items as its human-robot interaction design concept: feedback, synchronization, ingenuity and adaptability. A foot model is proposed to define the position and direction of a foot. The errors in the detection method used in the system are less than 40 mm in position and 15 deg in direction. On this basis, three parts are structured to achieve the system functions: Trajectory Designer, Trajectory Viewer and Mobile Walking Trainer. According to the experimental results,we have confirmed the systemworks as intended and designed such that the steps recorded in Trajectory Designer could be used successfully as the footmarks projected in Mobile Walking Trainer and foot-eye coordination training would be conducted smoothly.


2020 ◽  
Author(s):  
Thomas Williams

In previous work, researchers in Human-Robot Interaction (HRI) have demonstrated that user trust in robots depends on effective and transparent communication. This may be particularly true forrobots used for transportation, due to user reliance on such robots for physical movement and safety. In this paper, we present the design of an experiment examining the importance of proactive communication by robotic wheelchairs, as compared to non-vehicular mobile robots, within a Virtual Reality (VR) environment. Furthermore, we describe the specific advantages – and limitations – of conducting this type of HRI experiment in VR.


Sign in / Sign up

Export Citation Format

Share Document