interaction experiment
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Minkang Kim ◽  
Jean Decety ◽  
Ling Wu ◽  
Soohyun Baek ◽  
Derek Sankey

AbstractOne means by which humans maintain social cooperation is through intervention in third-party transgressions, a behaviour observable from the early years of development. While it has been argued that pre-school age children’s intervention behaviour is driven by normative understandings, there is scepticism regarding this claim. There is also little consensus regarding the underlying mechanisms and motives that initially drive intervention behaviours in pre-school children. To elucidate the neural computations of moral norm violation associated with young children’s intervention into third-party transgression, forty-seven preschoolers (average age 53.92 months) participated in a study comprising of electroencephalographic (EEG) measurements, a live interaction experiment, and a parent survey about moral values. This study provides data indicating that early implicit evaluations, rather than late deliberative processes, are implicated in a child’s spontaneous intervention into third-party harm. Moreover, our findings suggest that parents’ values about justice influence their children’s early neural responses to third-party harm and their overt costly intervention behaviour.


2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Lionel Hirschberg ◽  
Friedrich Bake ◽  
Karsten Knobloch ◽  
Angelo Rudolphi ◽  
Sebastian Kruck ◽  
...  

AbstractMeasurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream-measured acoustic response. The downstream acoustic pressure was found to remain negative as long as the swirl is maintained and reflections from the open downstream pipe termination do not interfere. The amplitude of this initial acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. When the tangential injection valve was closed, the mass-flow rate through the nozzle increased, resulting in an increase of the downstream acoustic pressure. This increase in signal was compared to the prediction of an empirical quasi-steady model, constructed from steady-state flow measurements. As the opening time of the valve was varied, the signal due to swirl evacuation showed an initial overshoot with respect to quasi-steady behavior, after which it gradually decayed to quasi-steady behavior for tangential injection times long compared to the convection time in the pipe upstream of the nozzle. This demonstrates that the acoustic signal can be used to obtain quantitative information concerning the time dependence of the swirl in the system. This could be useful for understanding the dynamics of flow in engines with swirl-stabilized combustion. Graphic abstract


2021 ◽  
Vol 10 (3) ◽  
pp. 1-25
Author(s):  
Ajung Moon ◽  
Maneezhay Hashmi ◽  
H. F. Machiel Van Der Loos ◽  
Elizabeth A. Croft ◽  
Aude Billard

When the question of who should get access to a communal resource first is uncertain, people often negotiate via nonverbal communication to resolve the conflict. What should a robot be programmed to do when such conflicts arise in Human-Robot Interaction? The answer to this question varies depending on the context of the situation. Learning from how humans use hesitation gestures to negotiate a solution in such conflict situations, we present a human-inspired design of nonverbal hesitation gestures that can be used for Human-Robot Negotiation. We extracted characteristic features of such negotiative hesitations humans use, and subsequently designed a trajectory generator (Negotiative Hesitation Generator) that can re-create the features in robot responses to conflicts. Our human-subjects experiment demonstrates the efficacy of the designed robot behaviour against non-negotiative stopping behaviour of a robot. With positive results from our human-robot interaction experiment, we provide a validated trajectory generator with which one can explore the dynamics of human-robot nonverbal negotiation of resource conflicts.


Bionatura ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1540-1654
Author(s):  
Bartolomé Chí Manzanero ◽  
Karla Gisel Carreón Anguiano ◽  
Jewel Nicole Anna Todd ◽  
Rufino Gómez Tah ◽  
Rosa Grijalva Arango ◽  
...  

Pseudocercospora fijiensis is a filamentous, hemi[B1] biotrophic fungus whose infection process in banana comprises biotrophic and necrotrophic phases; the biotrophic phase is the longer and less damaging of the two but is nonetheless a crucial stage of fungal establishment in the host. To discover the genes essential in this stage, we conducted an interaction experiment to isolate the transcriptome of the P. fijiensis and Musa acuminata interaction during the first 9 days of infection. Of more than 7000 P. fijiensis genes identified, the fifteen most highly expressed genes (RPKM>500) were analyzed. Specific non-canonical effector candidates were identified following in silico characterization which may be fundamental to pathogenicity. This report reveals essential details of a poorly-elucidated stage of the P. fijiensis-Musa sp. pathosystem.


2020 ◽  
Author(s):  
Frank Wang

Abstract We found that the physics of using a spin’s orientation to store data fundamentally differs from that of using a particle’s position as a (classical) bit of information: the former is quantum dynamic and independent of temperature (if the temperature is below the Curie point), whereas the latter is thermodynamic and thereby dependent on temperature. The formula to calculate the minimum energy of flipping a spin should be the Bohr magneton times the magnetic field. Obviously, the key to calculating such a minimum energy is to find a minimum magnetic field that should not be zero; otherwise, spin-flipping will not take place. Our conclusion is that the energy limit of storing data in a modern way (using a spin’s orientation) is 1.64E-36 J, 15 orders of magnitude lower than that of storing data in a classical way (using a particle’s position), which implies that spin electronics in data storage is fundamentally superior to classical charge-based methods in terms of energy efficiency and computational reversibility. We also verified this new limit based on a spinspin interaction experiment.


Author(s):  
Jingxuan Li ◽  
Tao Su ◽  
Cheng Zou ◽  
Wenzhe Luo ◽  
Gaoli Shi ◽  
...  

The H19 gene promotes skeletal muscle differentiation in mice, but the regulatory models and mechanisms of myogenesis regulated by H19 are largely unknown in pigs. Therefore, the regulatory modes of H19 in the differentiation of porcine skeletal muscle satellite cells (PSCs) need to be determined. We observed that H19 gene silencing could decrease the expressions of the myogenin (MYOG) gene, myogenic differentiation (MYOD), and myosin heavy chain (MYHC) in PSCs. Therefore, we constructed and sequenced 12 cDNA libraries of PSCs after knockdown of H19 at two differentiation time points to analyze the transcriptome differences. A total of 11,419 differentially expressed genes (DEGs) were identified. Among these DEGs, we found through bioinformatics analysis and protein interaction experiment that SRY-box transcription factor 4 (SOX4) and Drebrin 1 (DBN1) were the key genes in H19-regulated PSC differentiation. Functional analysis shows that SOX4 and DBN1 promote PSC differentiation. Mechanistically, H19 regulates PSC differentiation through two different pathways. On the one hand, H19 functions as a molecular sponge of miR-140-5p, which inhibits the differentiation of PSCs, thereby modulating the derepression of SOX4. On the other hand, H19 regulates PSC differentiation through directly binding with DBN1. Furthermore, MYOD binds to the promoters of H19 and DBN1. The knockdown of MYOD inhibits the expression of H19 and DBN1. We determined the function of H19 and provided a molecular model to elucidate H19’s role in regulating PSC differentiation.


2020 ◽  
Author(s):  
Xin Sun ◽  
Cuiping Wen ◽  
Jihua Xu ◽  
Yihe Wang ◽  
Jun Zhu ◽  
...  

Abstract MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL could produce the columnar trait is unclear. Here, we show that MdCoL influences ABA biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment showed that MdCoL interacts with MdDREB2. Transient expression and EMSA assays demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content was detected following co-overexpression of MdCoL–MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.


2020 ◽  
Vol 105 (7) ◽  
pp. 1078-1087
Author(s):  
Alysha G. McNeil ◽  
Robert L. Linnen ◽  
Roberta L. Flemming ◽  
Mostafa Fayek

Abstract Niobium and tantalum, rare metals and high field strength elements (HFSEs) that are essential to modern technologies, are concentrated among others in lithium-cesium-tantalum (LCT) pegmatites and rare metal granites. The most important hosts for Nb-Ta in these types of deposits are the columbite group minerals (columbite-tantalite), but at some ore deposits significant Ta is also contained in wodginite, microlite, and tapiolite. Previous solubility experiments of HFSE minerals have been limited to high temperatures because of the slow diffusivities of HFSEs in granitic melts. An experiment protocol is described herein that allows HFSE mineral solubilities to be determined at lower temperatures, more in line with the estimated solidus temperatures of LCT pegmatites and rare metal granites. This is achieved through the interaction of a melt that is enriched in high field strength elements (e.g., P and Nb or Ta) with a fluid enriched in a fluid-mobile element (FME, e.g., Mn). A starting glass enriched in a slow diffusing HFSE was synthesized, and HFSE mineral saturation is obtained via the diffusion of a FME into the melt via interaction with a fluid. This interaction can occur at much lower temperatures in reasonable experimental durations than for experiments that require diffusion of niobium and tantalum. The solubility product of columbite-(Mn) from the fluid-melt interaction experiment in a highly fluxed granitic melt at 700 °C is the same as those from dissolution and crystallization (reversal) experiments at the same P-T conditions. Thus, both methods produce reliable measurements of mineral solubility, and the differences in the metal concentrations in the quenched melts indicates that the solubility of columbite-(Mn) follows Henry's Law. Results show that columbite-(Mn) saturation can be reached at geologically reasonable concentrations of niobium in melts and manganese in hydrothermal fluids. This experimental protocol also allows the investigation of HFSE mineral crystallization by fluid-melt interactions in rare-metal pegmatites. Magmatic origins for columbite group minerals are well constrained, but hydrothermal Nb-Ta mineralization has also been proposed for pegmatite-hosted deposits such as Tanco, Greenbushes, and granite-hosted deposits such as Cínovec/Zinnwald, Dajishan, and Yichun. This study shows that columbite-(Mn), lithiophilite, and a Ca-Ta oxide mineral (that is likely microlite) crystallized from experiments in fluid-melt systems at temperatures as low as 650 °C at 200 MPa. It is important to note that HFSE minerals that crystallize from fluid-melt interactions texturally occur as euhedral crystals as phenocrysts in glass, i.e., are purely magmatic textures. Therefore, crystallization of HFSE minerals from fluid-melt interactions in rare metal granites and pegmatite deposits may be more widespread than previously recognized. This is significant because the formation of these deposits may require magmatic-hydrothermal interaction to explain the textures present in deposits worldwide, rather than always being the result of a single melt or fluid phase.


Sign in / Sign up

Export Citation Format

Share Document