Improving the Effectiveness of Model Based Recommender Systems for Highly Sparse and Noisy Web Usage Data

Author(s):  
B.S. Suryavansh ◽  
N. Shiri ◽  
S.P. Mudur
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 41782-41798 ◽  
Author(s):  
Santiago Alonso ◽  
Jesus Bobadilla ◽  
Fernando Ortega ◽  
Ricardo Moya

Author(s):  
SUPRIYA KUMAR DE ◽  
P. RADHA KRISHNA

Clustering of data in a large dimension space is of great interest in many data mining applications. In this paper, we propose a method for clustering of web usage data in a high-dimensional space based on a concept hierarchy model. In this method, the relationship present in the web usage data are mapped into a fuzzy proximity relation of user transactions. We also described an approach to present the preference set of URLs to a new user transaction based on the match score with the clusters. The study demonstrates that our approach is general and effective for mining the web data for web personalization.


Author(s):  
H. Inbarani ◽  
K. Thangavel

The technology behind personalization or Web page recommendation has undergone tremendous changes, and several Web-based personalization systems have been proposed in recent years. The main goal of Web personalization is to dynamically recommend Web pages based on online behavior of users. Although personalization can be accomplished in numerous ways, most Web personalization techniques fall into four major categories: decision rule-based filtering, content-based filtering, and collaborative filtering and Web usage mining. Decision rule-based filtering reviews users to obtain user demographics or static profiles, and then lets Web sites manually specify rules based on them. It delivers the appropriate content to a particular user based on the rules. However, it is not particularly useful because it depends on users knowing in advance the content that interests them. Content-based filtering relies on items being similar to what a user has liked previously. Collaborative filtering, also called social or group filtering, is the most successful personalization technology to date. Most successful recommender systems on the Web typically use explicit user ratings of products or preferences to sort user profile information into peer groups. It then tells users what products they might want to buy by combining their personal preferences with those of like-minded individuals. However, collaborative filtering has limited use for a new product that no one has seen or rated, and content-based filtering to obtain user profiles might miss novel or surprising information. Additionally, traditional Web personalization techniques, including collaborative or content-based filtering, have other problems, such as reliance on subject user ratings and static profiles or the inability to capture richer semantic relationships among Web objects. To overcome these shortcomings, the new Web personalization tool, nonintrusive personalization, attempts to increasingly incorporate Web usage mining techniques. Web usage mining can help improve the scalability, accuracy, and flexibility of recommender systems. Thus, Web usage mining can reduce the need for obtaining subjective user ratings or registration-based personal preferences. This chapter provides a survey of Web usage mining approaches.


2008 ◽  
pp. 2004-2021
Author(s):  
Jenq-Foung Yao ◽  
Yongqiao Xiao

Web usage mining is to discover useful patterns in the web usage data, and the patterns provide useful information about the user’s browsing behavior. This chapter examines different types of web usage traversal patterns and the related techniques used to uncover them, including Association Rules, Sequential Patterns, Frequent Episodes, Maximal Frequent Forward Sequences, and Maximal Frequent Sequences. As a necessary step for pattern discovery, the preprocessing of the web logs is described. Some important issues, such as privacy, sessionization, are raised, and the possible solutions are also discussed.


Author(s):  
Andreas Aresti ◽  
Penelope Markellou ◽  
Ioanna Mousourouli ◽  
Spiros Sirmakessis ◽  
Athanasios Tsakalidis

Recommendation systems are special personalization tools that help users to find interesting information and services in complex online shops. Even though today’s e-commerce environments have drastically evolved and now incorporate techniques from other domains and application areas such as Web mining, semantics, artificial intelligence, user modeling, and profiling setting up a successful recommendation system is not a trivial or straightforward task. This chapter argues that by monitoring, analyzing, and understanding the behavior of customers, their demographics, opinions, preferences, and history, as well as taking into consideration the specific e-shop ontology and by applying Web mining techniques, the effectiveness of produced recommendations can be significantly improved. In this way, the e-shop may upgrade users’ interaction, increase its usability, convert users to buyers, retain current customers, and establish long-term and loyal one-to-one relationships.


2011 ◽  
pp. 2381-2402
Author(s):  
G. Castellano ◽  
A.M. Fanelli ◽  
M.A. Torsello

Due to the growing variety and quantity of information available on the Web, there is urgent need for developing Web-based applications capable of adapting their services to the needs of the users. This is the main rationale behind the flourishing area of Web personalization that finds in soft computing (SC) techniques a valid tool to handle uncertainty in Web usage data and develop Web-based applications tailored to user preferences. The main reason for this success seems to be the synergy resulting from SC paradigms, such as fuzzy logic, neural networks, and genetic algorithms. Each of these computing paradigms provides complementary reasoning and searching methods that allow the use of domain knowledge and empirical data to solve complex problems. In this chapter, we emphasize the suitability of hybrid schemes combining different SC techniques for the development of effective Web personalization systems. In particular, we present a neuro-fuzzy approach for Web personalization that combines techniques from the fuzzy and the neural paradigms to derive knowledge from Web usage data and represent the knowledge in the comprehensible form of fuzzy rules. The derived knowledge is ultimately used to dynamically suggest interesting links to the user of a Web site.


Sign in / Sign up

Export Citation Format

Share Document