Research on Time-Cost Optimization Model of Construction Projects

Author(s):  
Jian-Wen Huang ◽  
Xing-Xia Wang ◽  
Yi-Hong Zhou
2019 ◽  
Vol 18 (2) ◽  
pp. 226-237
Author(s):  
Mohammad Lemar Zalmai ◽  
◽  
Cemil Akcay ◽  
Ekrem Manisali ◽  
◽  
...  

2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianqi Wang ◽  
Moatassem Abdallah ◽  
Caroline Clevenger ◽  
Shahryar Monghasemi

Purpose Achieving project objectives in constructionprojects such as time, cost and quality is a challenging task. Minimizing project cost often results in additional project duration and might jeopardize quality, and minimizing project duration often results in additional cost and might jeopardize quality. Also, increasing construction quality often results in additional cost and time. The purpose of this paper is to identify and analyze trade-offs among the project objectives of time, cost and quality. Design/methodology/approach The optimization model adopted a quantitative research method and is developed in two main steps formulation step that focuses on identifying model decision variables and formulating objective functions, and implementation step that executes the model computations using multi-objective optimization of Non-Dominated Sorting Genetic Algorithms to identify the aforementioned trade-offs, and codes the model using python. The model performance is verified and tested using a case study of construction project consisting of 20 activities. Findings The model was able to show practical and needed value for construction managers by identifying various trade-off solutions between the project objectives of time, cost and quality. For example, the model was able to identify the shortest project duration at 84 days while keeping cost under $440,000 and quality higher than 85 percent. However, with an additional budget of $20,000 (4.5 percent increase), the quality can be increased to 0.935 (8.5 percent improvement). Research limitations/implications The present research work is limited to project objectives of time, cost and quality. Future expansion of the model will focus on additional project objectives such as safety and sustainability. Furthermore, new optimization models can be developed for construction projects with repetitive nature such as roads, tunnels and high rise buildings. Practical implications The present model advances existing research in planning construction projects efficiently and achieving important project objectives. On the practical side, the optimization model will support the construction industry by allowing construction managers to identify the highest quality to deliver a construction project within specified budget and duration, lowest cost for specified duration and quality or shortest duration for specified budget and quality. Originality/value The present model introduces new and innovative method of increasing working hours per day and number of working days per shift while analyzing labor working efficiency and overtime rate to identify optimal trade-offs among important project objectives of time, cost and quality.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Zou ◽  
Lihui Zhang ◽  
Qian Zhang

PurposeThe purpose of this research is to develop a time-cost optimization model to schedule repetitive projects while considering limited resource availability.Design/methodology/approachThe model is based on the constraint programming (CP) framework; it integrates multiple scheduling characteristics of repetitive activities such as continuous or fragmented execution, atypical activities and coexistence of different modes in an activity. To improve project performance while avoiding inefficient hiring and firing conditions, the strategy of bidirectional acceleration is presented and implemented, which requires keeping regular changes in the execution modes between successive subactivities in the same activity.FindingsTwo case studies involving a real residential building construction project and a hotel refurbishing project are used to demonstrate the application of the proposed model based on four different scenarios. The results show that (1) the CP model has great advantages in terms of solving speed and solution quality than its equivalent mathematical model, (2) higher project performance can be obtained compared to using previously developed models and (3) the model can be easily replicated or even modified to enable multicrew implementation.Originality/valueThe original contribution of this research is presenting a novel CP-based repetitive scheduling optimization model to solve the multimode resource-constrained time-cost tradeoff problem of repetitive projects. The model has the capability of minimizing the project total cost that is composed of direct costs, indirect costs, early completion incentives and late completion penalties.


Sign in / Sign up

Export Citation Format

Share Document