Physical layer impairment-aware Routing and Wavelength Assignment (PLI-RWA) strategy for mixed line rate (MLR) wavelength division multiplexed (WDM) optical networks

Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh
2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Sridhar Iyer

AbstractThe ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks’ capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network’s performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
Sridhar Iyer

AbstractWith the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward “green” ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.


2019 ◽  
Vol 40 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh

Abstract The ever increasing heterogeneity and growing traffic volume has resulted in significant innovations and paradigm shifts within the telecom backbone networks. In order to cost-effectively respond to the diverse variety of traffic requirements having heterogeneous service demands, wavelength division multiplexed (WDM) optical networks have adopted the mixed line rate (MLR) strategy. In MLR networks, many wavelength channels with various line rates can co-exist within the same fiber which, however, raises many important design issues; one of them being the choice of the channel spacing. The quality of signal is affected by the channel spacing in terms of the bit-error rate (BER), which in turn affects the maximum optical reach of the lightpaths that depends on the line rates. In regard to the aforementioned, different methods can be adopted in order to set the width of the channel spacing, viz., (a) choice of a 50 GHz uniform fixed channel spacing specified by the ITU-T grid, (b) exploring various channel spacing values for different line rates so as to optimize the usage of the fiber spectrum, or (c) seek for an optimal value of the channel spacing which results in the minimum network cost. In the current work, we evaluate the MLR network cost for various channel spacings; hence, we find an optimal value of the channel spacing that leads to the minimum MLR network cost. The simulation results reveal that, for a MLR network, even with the assumption of uniform channel spacing, optimal values of the channel spacing for a minimum cost network can be identified.


2000 ◽  
Author(s):  
John M. Senior ◽  
Michael R. Handley ◽  
Mark S. Leeson ◽  
Andrew J. Phillips ◽  
John Ainscough

Author(s):  
Bin Wang ◽  
Yousef S. Kavian

Optical networks form the foundation of the global network infrastructure; hence, the planning and design of optical networks is crucial to the operation and economics of the Internet and its ability to support critical and reliable communication services. This book chapter covers various aspects of optimal optical network design, such as wavelength-routed Wavelength Division Multiplexing (WDM) optical networks, Spectrum-Sliced Elastic (SLICE) optical networks. As background, the chapter first briefly describes optical ring networks, WDM optical networks, and SLICE optical networks, as well as basic concepts of routing and wavelength assignment and virtual topology design, survivability, and traffic grooming in optical networks. The reader is referred to additional references for details. Many optical network design problems can be formulated as sophisticated optimization problems, including (1) Routing and Wavelength Assignment (RWA) and virtual topology design problem, (2) a suite of network design problems (such as variants of traffic grooming, survivability, and impairment-aware routing), (3) various design problems aimed at reducing the overall energy consumption of optical networks for green communication, (4) various design optimization problems in SLICE networks that employ OFDM technologies. This chapter covers numerous optical network design optimization problems and solution approaches in detail and presents some recent developments and future research directions.


Sign in / Sign up

Export Citation Format

Share Document