New error resilience method for video transmission in DS-CDMA systems

Author(s):  
M.R. Hueda
2019 ◽  
Vol 17 (6) ◽  
pp. 2047-2063
Author(s):  
Taha T. Alfaqheri ◽  
Abdul Hamid Sadka

AbstractTransmission of high-resolution compressed video on unreliable transmission channels with time-varying characteristics such as wireless channels can adversely affect the decoded visual quality at the decoder side. This task becomes more challenging when the video codec computational complexity is an essential factor for low delay video transmission. High-efficiency video coding (H.265|HEVC) standard is the most recent video coding standard produced by ITU-T and ISO/IEC organisations. In this paper, a robust error resilience algorithm is proposed to reduce the impact of erroneous H.265|HEVC bitstream on the perceptual video quality at the decoder side. The proposed work takes into consideration the compatibility of the algorithm implementations with and without feedback channel update. The proposed work identifies and locates the frame’s most sensitive areas to errors and encodes them in intra mode. The intra-refresh map is generated at the encoder by utilising a grey projection method. The conducted experimental work includes testing the codec performance with the proposed work in error-free and error-prone conditions. The simulation results demonstrate that the proposed algorithm works effectively at high packet loss rates. These results come at the cost of a slight increase in the encoding bit rate overhead and computational processing time compared with the default HEVC HM16 reference software.


2020 ◽  
Vol 10 (14) ◽  
pp. 4923
Author(s):  
Zhe Liu ◽  
He Chen ◽  
Songlin Sun

In order to make video transmission more stable, various error-resilient mechanisms are proposed on video coding in the literature. However, the redundancy mechanism behind classical redundant coding algorithms is relatively simple and is not suitable for the network environment and video content in the context of screen content sequence with multiple abrupt frames and still frames. Motivated by this, a frame-level coding selection mechanism is proposed in this paper for the error-resilience transmission of screen content, where additional code stream or redundant information is considered to improve error-resilient performance with redundant coding and acceptable video quality is obtained in the case of frame transmission error. In addition, selective allocation redundancy is conducted to take the importance of the video frame ROI (region of interest) area into account in the co-encoding process. As a result, the redundancy insertion efficiency and the reliability are improved in return. The corresponding experiments validate the effectiveness of the schemes proposed in this paper.


2004 ◽  
Vol 50 (2) ◽  
pp. 715-722 ◽  
Author(s):  
Hongkai Xiong ◽  
Songyu Yu ◽  
Jun Sun ◽  
Jun Zhou ◽  
Chuan Chen

Sign in / Sign up

Export Citation Format

Share Document