scholarly journals Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks

2015 ◽  
Vol 52 (5) ◽  
pp. 1188-1196 ◽  
Author(s):  
Peter Manning ◽  
Franciska T. de Vries ◽  
Jerry R. B. Tallowin ◽  
Roger Smith ◽  
Simon R. Mortimer ◽  
...  
2016 ◽  
Vol 13 (1) ◽  
pp. 59-68
Author(s):  
Roshan M. Bajracharya ◽  
Him Lal Shrestha ◽  
Ramesh Shakya ◽  
Bishal K. Sitaula

Land management regimes and forest types play an important role in the productivity and accumulation of terrestrial carbon pools. While it is commonly accepted that forests enhance carbon sequestration and conventional agriculture causes carbon depletion, the effects of agro-forestry are not well documented. This study investigated the carbon stocks in biomass and soil, along with the selected soil properties in agro-forestry plots compared to community forests (CF) and upland farms in Chitwan, Gorkha and Rasuwa districts of Central Nepal during the year 2012-2013. We determined the total above ground biomass carbon, soil organic carbon (SOC) stocks and soil properties (bulk density, organic carbon per cent, pH, total nitrogen (TN), available phosphorus (P), exchangeable potassium (K), and cation exchange capacity (CEC)) on samples taken from four replicates of 500 m2 plots each in community forests, agro-forestry systems and agricultural land. The soil was sampled in two increments at 0-15 cm and 15-30 cm depths and intact cores removed for bulk density and SOC determination, while loose samples were separately collected for the laboratory analysis of other soil properties. The mean SOC percent and corresponding soil carbon stocks to 30 cm depth were generally highest in CF (3.71 and 3.69 per cent, and 74.98 and 76.24 t ha-1, respectively), followed by leasehold forest (LHF) (2.26 and 1.13 per cent and 40.72 and 21.34 t ha-1, respectively) and least in the agricultural land (3.05 and 1.09 per cent, and 63.54 and 19.42 t ha-1, respectively). This trend was not, however, observed in Chitwan, where agriculture (AG) had the highest SOC content (1.98 per cent) and soil carbon stocks (42.5 t ha-1), followed by CF (1.8 per cent and 41.2 t ha-1) and leasehold forests (1.56 per cent and 35.3 t ha-1) although the differences were not statistically significant. Other soil properties were not significantly different among land use types with the exceptions of pH, total N, available P and CEC in the Chitwan plots. Typically, SOC and soil carbon stocks (to 30cm depth) were positively correlated with each other and with TN and CEC. The AGB-C was expectantly highest in Rasuwa district CF (ranging from 107.3 to 260.3 t ha-1) due to dense growth and cool climate, followed by Gorkha (3.1 to 118.4 t ha-1), and least in Chitwan (17.6 to 95.2 t ha-1). The highest C stocks for agro-forestry systems in both above ground and soil were observed in Rasuwa, followed by Chitwan district. Besides forests, agro-forestry systems also hold good potential to store and accumulate carbon, hence they have scope for contributing to climate change mitigation and adaptation with co-benefits.Journal of Forest and Livelihood 13(1) May, 2015, page: 56-68


2020 ◽  
Author(s):  
Victoria Janes-Bassett ◽  
Jessica Davies ◽  
Richard Bassett ◽  
Dmitry Yumashev ◽  
Ed Rowe ◽  
...  

<p>Throughout the Anthropocene, the conversion of land to agriculture and atmospheric deposition of nitrogen have resulted in significant changes to biogeochemical cycling, including soil carbon stocks. Quantifying these changes is complex due to a number of influential factors (including climate, land use management, soil type) and their interactions. As the largest terrestrial store of carbon, soils are a key component in climate regulation. In addition, soil carbon storage contributes to numerous ecosystem services including food provision. It is therefore imperative that we understand changes to soil carbon stocks, and provide effective strategies for their future management.</p><p>Modelling soil systems provides a means to estimate changes to soil carbon stocks. Due to linkages between the carbon cycle and other major nutrient cycles (notably nitrogen and phosphorus which often limit the productivity of ecosystems), models of integrated nutrient cycling are required to understand the response of the carbon cycle to global pressures. Simulating the impacts of land use changes requires capacity to model both semi-natural and intensive agricultural systems.</p><p>In this study, we have developed an integrated carbon-nitrogen-phosphorus model of semi-natural systems to include representation of both arable and grassland systems, and a range of agricultural management practices. The model is applicable to large spatial scales, as it uses readily available input data and does not require site-specific calibration.  After being validated both spatially and temporally using data from long-term experimental sites across Northern-Europe, the model was applied at a national scale throughout the United Kingdom to assess the impacts of land use change and management practices during the last two centuries. Results indicate a decrease in soil carbon in areas of agricultural expansion, yet in areas of semi-natural land use, atmospheric deposition of nitrogen has resulted in increased net primary productivity and subsequently soil carbon. The results demonstrate anthropogenic impacts on long-term nutrient cycling and soil carbon storage, and the importance of integrated nutrient cycling within models.</p>


2002 ◽  
Vol 116 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Marlen D Eve ◽  
Mark Sperow ◽  
Keith Paustian ◽  
Ronald F Follett

Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 133
Author(s):  
Emiru Birhane ◽  
Kbrom Fissiha Gebretsadik ◽  
Gebeyehu Taye ◽  
Ermias Aynekulu ◽  
Meley Mekonen Rannestad ◽  
...  

We investigated arbuscular mycorrhizal fungi (AMF) spore density and root colonization in three distinct dry Afromontane forest plant communities, representing differing levels of disturbance and soil properties. Soil and root samples were collected from sixty-five 50 × 50-m plots from four plant communities. We collected data for AMF spore density, AMF root colonization and soil organic carbon stocks in 0–25 and 25–50 cm soil depth ranges. AMF spore density, and root colonization differed significantly among plant communities. The least disturbed Juniperus procera–Maytenus senegalensis (Jupr-Mase) plant community, which contained high tree and shrub density, had the highest AMF spore density, root colonization and soil carbon stocks. The most disturbed Cadia purpurea–Opuntia ficus-indica (Capu-Opfi) community which contained the lowest tree and shrub density supported the lowest AMF spore density, root colonization and soil carbon stocks. There was no significant difference in spore density between the two soil depths, but AMF root colonization was significantly higher in the upper soil than in the subsoil (p < 0.001). The difference in soil properties was not uniform between plant communities. Conserving remnant dry Afromontane forests and restoring the degraded forests are critical to improve and maintain forest ecosystem functioning and sustain ecosystem services.


Author(s):  
Majid Jami Al-Ahmadi ◽  
Parastoo Byranvand ◽  
Abdolmajid Mahdavi Damghani ◽  
Mohammad Hasan Sayyari Zahan

2016 ◽  
Vol 67 (1) ◽  
pp. 61-69
Author(s):  
M Forouzangohar ◽  
R Setia ◽  
DD Wallace ◽  
CR Nitschke ◽  
LT Bennett

2021 ◽  
Vol 446 ◽  
pp. 109500
Author(s):  
Gaurav Mishra ◽  
Avishek Sarkar ◽  
Krishna Giri ◽  
Arun Jyoti Nath ◽  
Rattan Lal ◽  
...  

2016 ◽  
Vol 158 ◽  
pp. 186
Author(s):  
Martin Gauder ◽  
Norbert Billen ◽  
Sabine Zikeli ◽  
Moritz Laub ◽  
Simone Graeff-Hönninger ◽  
...  

2018 ◽  
Vol 177 ◽  
pp. 97-104 ◽  
Author(s):  
Émilie Maillard ◽  
Brian G. McConkey ◽  
Mervin St. Luce ◽  
Denis A. Angers ◽  
Jianling Fan

Sign in / Sign up

Export Citation Format

Share Document