The perception of self-motion induced by central and peripheral visual stimuli moving in opposite directions

2001 ◽  
Vol 43 (3) ◽  
pp. 113-120 ◽  
Author(s):  
Shinji Nakamura
1999 ◽  
Vol 126 (4) ◽  
pp. 495-500 ◽  
Author(s):  
K. V. Thilo ◽  
Thomas Probst ◽  
Adolfo M. Bronstein ◽  
Yatsuji Ito ◽  
Michael A. Gresty

1998 ◽  
Vol 87 (2) ◽  
pp. 667-672 ◽  
Author(s):  
Shinji Nakamura ◽  
Shinsuke Shimojo

We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.


Author(s):  
Luc Tremblay ◽  
Andrew Kennedy ◽  
Dany Paleressompoulle ◽  
Liliane Borel ◽  
Laurence Mouchnino ◽  
...  

2006 ◽  
Vol 9 (2) ◽  
pp. 163-166 ◽  
Author(s):  
E.A. Keshner ◽  
K. Dokka ◽  
R.V. Kenyon

Author(s):  
Kathleen E. Cullen

As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world, and of our orientation relative to gravity. Essential to this computation is the information provided by the vestibular system; it detects the rotational velocity and linear acceleration of our heads relative to space, making a fundamental contribution to our perception of self-motion and spatial orientation. Additionally, in everyday life, our perception of self-motion depends on the integration of both vestibular and nonvestibular cues, including visual and proprioceptive information. Furthermore, the integration of motor-related information is also required for perceptual stability, so that the brain can distinguish whether the experienced sensory inflow was a result of active self-motion through the world or if instead self-motion that was externally generated. To date, understanding how the brain encodes and integrates sensory cues with motor signals for the perception of self-motion during natural behaviors remains a major goal in neuroscience. Recent experiments have (i) provided new insights into the neural code used to represent sensory information in vestibular pathways, (ii) established that vestibular pathways are inherently multimodal at the earliest stages of processing, and (iii) revealed that self-motion information processing is adjusted to meet the needs of specific tasks. Our current level of understanding of how the brain integrates sensory information and motor-related signals to encode self-motion and ensure perceptual stability during everyday activities is reviewed.


Sign in / Sign up

Export Citation Format

Share Document