body tilt
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 1)

Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Takahiro Fukui ◽  
Souichiro Matsukawa ◽  
Yasushi Habu ◽  
Yasuhiro Fukuoka

We propose a method to achieve autonomous gait transition according to speed for a quadruped robot pacing at medium speeds. We verified its effectiveness through experiments with the simulation model and the robot we developed. In our proposed method, a central pattern generator (CPG) is applied to each leg. Each leg is controlled by a PD controller based on output from the CPG. The four CPGs are coupled, and a hard-wired CPG network generates a pace pattern by default. In addition, we feed the body tilt back to the CPGs in order to adapt to the body oscillation that changes according to the speed. As a result, our model and robot achieve stable changes in speed while autonomously generating a walk at low speeds and a rotary gallop at high speeds, despite the fact that the walk and rotary gallop are not preprogramed. The body tilt angle feedback is the only factor involved in the autonomous generation of gaits, so it can be easily used for various quadruped robots. Therefore, it is expected that the proposed method will be an effective control method for quadruped robots.


Author(s):  
A. Ozulu ◽  
B. Lyubarsky

The article considers the issue of the system of the running gear of a high-speed electric train with a body inclination and the system of oscillation recovery. The authors considered the main suspension systems of the electric train body, which are currently used. The main problems of these suspension systems were put forward. Attention is paid to the use of air-spring suspension. The pipe suspension of the VL80 electric locomotive and the construction of the trolley itself are considered. The basic criteria of an estimation of efficiency of perspective electromechanical shock-absorbers on which the comparative characteristic is carried out are defined. The article describes a promising electromechanical shock absorber based on a synchronous linear motor, which can provide both body tilt and damping and recovery of oscillations. The functional scheme of control of two synchronous linear motors which are established on one cart is considered. The operation of the control system of synchronous linear motors is described. The design of a linear DC motor with permanent magnets is described. The functional control scheme of two linear DC motors with permanent magnets is considered. The design of the electromechanical shock-absorber of the Bose company is resulted. The comparative characteristic of three perspective electromechanical shock-absorbers on six criteria is carried out. Conclusions are made and an electromechanical shock absorber is selected, which provides the basic needs of rolling stock.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daohua Pan ◽  
Hongwei Liu

Falls in the elderly are a common phenomenon in daily life, which causes serious injuries and even death. Human activity recognition methods with wearable sensor signals as input have been proposed to improve the accuracy and automation of daily falling recognition. In order not to affect the normal life behavior of the elderly, to make full use of the functions provided by the smartphone, to reduce the inconvenience caused by wearing sensor devices, and to reduce the cost of monitoring systems, the accelerometer and gyroscope integrated inside the smartphone are employed to collect the behavioral data of the elderly in their daily lives, and the threshold analysis method is used to study the human falling behavior recognition. Based on this, a three-level threshold detection algorithm for human fall behavior recognition is proposed by introducing human movement energy expenditure as a new feature. The algorithm integrates the changes of human movement energy expenditure, combined acceleration, and body tilt angle in the process of falling, which alleviates the problem of misjudgment caused by using only the threshold information of acceleration or (and) angle change to discriminate falls and improves the recognition accuracy. The recognition accuracy of this algorithm is verified by experiments to reach 95.42%. The APP is also devised to realize the timely detection of fall behavior and send alarms automatically.


2021 ◽  
Author(s):  
Sophia Nestmann ◽  
Lisa Roehrig ◽  
Bjoern Mueller ◽  
Winfried Ilg ◽  
Hans-Otto Karnath

Hemiparetic stroke patients with 'pusher syndrome' use their non-paretic extremities to push towards their paralyzed side and actively resist external posture correction. The disorder is associated with a distorted perception of postural vertical combined with a maintained, or little deviating perception of visual upright. With the aim of reducing this mismatch, and thus reducing pushing behavior, we manipulated the orientation of visual input in a virtual reality setup. We presented healthy subjects and an acute stroke patient with severe pusher syndrome a 3D visual scene that was either upright or tilted in roll plane by 20°. By moving the sitting participants in roll plane to the left and right, we assessed the occurrence of active pushing behavior, namely the active resistance to external posture manipulation. With the 3D visual scene oriented upright, the patient with pusher syndrome showed the typical active resistance against tilts towards the ipsilesional side. He used his non-paretic arm to block the examiner's attempt to move the body axis towards that side. With the visual scene tilted to the ipsiversive left, his pathological resistance was significantly reduced. Statistically, the tolerated body tilt angles no longer differed from those of healthy controls. We conclude that even short presentations of tilted 3D visual input can reduce pusher symptoms. The technique provides potential for a new treatment method of pusher syndrome and offers a simple, straightforward approach that can be effortlessly integrated in clinical practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Tani ◽  
Satoshi Tanaka

AbstractAccurate perception of the orientations of the body axis and gravity is essential for actions. The ability to perceive these orientations during head and body tilt varies across individuals, and its underlying neural basis is unknown. To address this, we investigated the association between inter-individual differences in local gray matter (GM) volume and inter-individual differences in the ability to estimate the directions of body longitudinal axis or gravity during whole-body tilt using voxel-based morphometry (VBM) analysis in 50 healthy adults (20–46 years, 25 men and 25 women). Although no anatomical regions were identified relating to performance requiring estimates of gravitational direction, we found a significant correlation between the GM volume in the right middle occipital gyrus and the ability to estimate the body axis orientation. This finding provides the first evidence on neuroanatomical substrates of the perception of body axis orientation during body tilt.


2021 ◽  
Author(s):  
Kyla Rose Hamling ◽  
Katherine Harmon ◽  
Marie Rose Greaney ◽  
Zoë Dobler ◽  
Yukiko Kimura ◽  
...  

Vertebrate vestibular circuits use sensory signals derived from the inner ear to guide both corrective and volitional movements. A major challenge in the neuroscience of balance is to link the synaptic and cellular substrates that encode body tilts to specific behaviors that stabilize posture and enable efficient locomotion. Here we address this problem by measuring the development, synaptic architecture, and behavioral contributions of vestibulospinal neurons in the larval zebrafish. First, we find that vestibulospinal neurons are born and are functionally mature before larvae swim freely, allowing them to act as a substrate for postural regulation. Next, we map the synaptic inputs to vestibulospinal neurons that allow them to encode posture. Further, we find that this synaptic architecture allows them to respond to linear acceleration in a directionally-tuned and utricle-dependent manner; they are thus poised to guide corrective movements. After loss of vestibulospinal neurons, larvae adopted eccentric postures with disrupted movement timing and weaker corrective kinematics. We used a generative model of swimming to demonstrate that together these disruptions can account for the increased postural variability. Finally, we observed that lesions disrupt vestibular-dependent coordination between the fins and trunk during vertical swimming, linking vestibulospinal neurons to navigation. We conclude that vestibulospinal neurons turn synaptic representations of body tilt into defined corrective behaviors and coordinated movements. As the need for stable locomotion is common and the vestibulospinal circuit is highly conserved our findings reveal general mechanisms for neuronal control of balance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250851
Author(s):  
Keisuke Tani ◽  
Shinji Yamamoto ◽  
Yasushi Kodaka ◽  
Keisuke Kushiro

Concurrent body movements have been shown to enhance the accuracy of spatial judgment, but it remains unclear whether they also contribute to perceptual estimates of gravitational space not involving body movements. To address this, we evaluated the effects of static or dynamic arm movements during prolonged whole-body tilt on the subsequent perceptual estimates of visual or postural vertical. In Experiment 1, participants were asked to continuously perform static or dynamic arm movements during prolonged tilt, and we assessed their effects on the prolonged tilt-induced shifts of subjective visual vertical (SVV) at a tilted position (during-tilt session) or near upright (post-tilt session). In Experiment 2, we evaluated how static or dynamic arm movements during prolonged tilt subsequently affected the subjective postural vertical (SPV). In Experiment 1, we observed that the SVV was significantly shifted toward the direction of prolonged tilt in both sessions. The SVV shifts decreased when performing dynamic arm movements in the during-tilt session, but not in the post-tilt session. In Experiment 2, as well as SVV, the SPV was shifted toward the direction of prolonged tilt, but it was not significantly attenuated by the performance of static or dynamic arm movements. The results of the during-tilt session suggest that the central nervous system utilizes additional information generated by dynamic body movements for perceptual estimates of visual vertical.


2021 ◽  
pp. 1-16
Author(s):  
Céline Piscicelli ◽  
Anna Castrioto ◽  
Marie Jaeger ◽  
Valerie Fraix ◽  
Stephan Chabardes ◽  
...  

Background: Verticality perception is frequently altered in Parkinson’s disease (PD) with Pisa syndrome (PS). Is it the cause or the consequence of the PS? Objective: We tested the hypothesis that both scenarios coexist. Methods: We performed a double-blind within-person randomized trial (NCT02704910) in 18 individuals (median age 63.5 years) with PD evolving for a median of 17.5 years and PS for 2.5 years and treated with bilateral stimulation of the subthalamus nuclei (STN-DBS) for 6.5 years. We analyzed whether head and trunk orientations were congruent with the visual (VV) and postural (PV) vertical, and whether switching on one or both sides of the STN-DBS could modulate trunk orientation via verticality representation. Results: The tilted verticality perception could explain the PS in 6/18 (33%) patients, overall in three right-handers (17%) who showed net and congruent leftward trunk and PV tilts. Two of the 18 (11%) had an outstanding clinical picture associating leftward: predominant parkinsonian symptoms, whole-body tilt (head –11°, trunk –8°) and transmodal tilt in verticality perception (PV –10°, VV –8.9°). Trunk orientation or VV were not modulated by STN-DBS, whereas PV tilts were attenuated by unilateral or bilateral stimulations if it was applied on the opposite STN. Conclusion: In most cases of PS, verticality perception is altered by the body deformity. In some cases, PS seems secondary to a biased internal model of verticality, and DBS on the side of the most denervated STN attenuated PV tilts with a quasi-immediate effect. This is an interesting track for further clinical studies.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011826
Author(s):  
Shenhao Dai ◽  
Céline Piscicelli ◽  
Emmanuelle Clarac ◽  
Monica Baciu ◽  
Marc Hommel ◽  
...  

ObjectiveTo test the hypothesis that lateropulsion is an entity expressing an impaired body orientation with respect to gravity, in relation to a biased graviception and spatial neglect.MethodsData from the DOBRAS cohort (ClinicalTrials.gov:NCT03203109), were collected 30 days after a first hemisphere stroke. Lateral body tilt, pushing and resistance were assessed with the Scale for Contraversive Pushing.ResultsAmong 220 individuals, 72% were Upright and 28% showed lateropulsion (Tilters=14% less severe than Pushers=14%). The three signs had very high factor loadings (>0.90) on a same dimension, demonstrating that lateropulsion was effectively an entity comprising body tilt (cardinal sign), pushing and resistance. The factorial analyses also showed that lateropulsion was inseparable from the visual vertical (VV), a criterion referring to vertical orientation (graviception). Contralesional VV biases were frequent (44%), with a magnitude related to lateropulsion severity: Upright -0.6°(-2.9;2.4), Tilters -2.9°(-7;0.8), Pushers -12.3°(-15.4;-8.5). Ipsilesional VV biases were less frequent and milder (p<0.001). They did not deal with graviception, 84% being found in upright individuals. Multivariate, factorial, contingency, and prediction analyses congruently showed strong similarities between lateropulsion and spatial neglect, the latter encompassing the former.ConclusionsLateropulsion (pusher syndrome) is a trinity constituted by body tilt, pushing and resistance. It is a way to adjust the body orientation in the roll plane to a wrong reference of verticality. Referring to straight above, lateropulsion might correspond to a form of spatial neglect (referring to straight ahead), which would advocate for 3-D maps in the human brain involving the internal model of verticality.


2021 ◽  
Vol 15 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Koji Nagino ◽  
Tomoyuki Shiozaki ◽  
Yohei Okada ◽  
Nobuhiko Mori ◽  
...  

ObjectiveNoisy galvanic vestibular stimulation (nGVS) is often used to improve postural stability in disorders, such as neurorehabilitation montage. For the safe use of nGVS, we investigated whether arterial pressure (AP) and heart rate vary during static supine and slow whole-body tilt with random nGVS (0.4 mA, 0.1–640 Hz, gaussian distribution) in a healthy elderly population.MethodsThis study was conducted with a double-blind, sham-controlled, cross-over design. Seventeen healthy older adults were recruited. They were asked to maintain a static supine position on a bed for 10 min, and the bed was tilted up (TU) to 70 degrees within 30 s. After maintaining this position for 3 min, the bed was passively tilted down (TD) within 30 s. Real-nGVS or sham-nGVS was applied from 4 to 15 min. The time course of mean arterial pressure (MAP) and RR interval variability (RRIV) were analyzed to estimate the autonomic nervous activity.ResultnGVS and/or time, including pre-/post-event (nGVS-start, TU, and TD), had no impact on MAP and RRIV-related parameters. Further, there was no evidence supporting the argument that nGVS induces pain, vertigo/dizziness, and uncomfortable feeling.ConclusionnGVS may not affect the AP and RRIV during static position and whole-body tilting or cause pain, vertigo/dizziness, and discomfort in the elderly.


Sign in / Sign up

Export Citation Format

Share Document