Orientation of Selective Effects of Body Tilt on Visually Induced Perception of Self-Motion

1998 ◽  
Vol 87 (2) ◽  
pp. 667-672 ◽  
Author(s):  
Shinji Nakamura ◽  
Shinsuke Shimojo

We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.

2014 ◽  
Vol 112 (10) ◽  
pp. 2481-2491 ◽  
Author(s):  
Sebastian M. Frank ◽  
Oliver Baumann ◽  
Jason B. Mattingley ◽  
Mark W. Greenlee

The central hub of the cortical vestibular network in humans is likely localized in the region of posterior lateral sulcus. An area characterized by responsiveness to visual motion has previously been described at a similar location and named posterior insular cortex (PIC). Currently it is not known whether PIC processes vestibular information as well. We localized PIC using visual motion stimulation in functional magnetic resonance imaging (fMRI) and investigated whether PIC also responds to vestibular stimuli. To this end, we designed an MRI-compatible caloric stimulation device that allowed us to stimulate bithermally with hot temperature in one ear and simultaneously cold temperature in the other or with warm temperatures in both ears for baseline. During each trial, participants indicated the presence or absence of self-motion sensations. We found activation in PIC during periods of self motion when vestibular stimulation was carried out with minimal visual input. In combined visual-vestibular stimulation area PIC was activated in a similar fashion during congruent and incongruent stimulation conditions. Our results show that PIC not only responds to visual motion but also to vestibular stimuli related to the sensation of self motion. We suggest that PIC is part of the cortical vestibular network and plays a role in the integration of visual and vestibular stimuli for the perception of self motion.


1999 ◽  
Vol 126 (4) ◽  
pp. 495-500 ◽  
Author(s):  
K. V. Thilo ◽  
Thomas Probst ◽  
Adolfo M. Bronstein ◽  
Yatsuji Ito ◽  
Michael A. Gresty

2004 ◽  
Vol 14 (5) ◽  
pp. 375-385 ◽  
Author(s):  
E.L. Groen ◽  
W. Bles

We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04âĂŞ0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76 m / s 2 ). Simultaneously, subjects were tilted backward and forward about their pitch axis. The amplitude of pitch tilt was systematically varied. Using a two-alternative-forced-choice paradigm, psychometric curves were calculated in order to determine: 1) the minimum tilt amplitude required to generate a linear self-motion percept in more than 50% of the cases, and 2) the maximum tilt amplitude at which rotation remains sub-threshold in more than 50% of the cases. The results showed that the simulation of linear self motion became more realistic with the application of whole body tilt, as long as the tilt rate remained under the detection threshold of about 3 deg/s. This value is in close agreement with the empirical rate limit commonly used in flight simulation. The minimum required motion cue was inversely proportional to stimulus frequency, and increased with the amplitude of the visual displacement (rather than acceleration). As a consequence, the range of useful tilt stimuli became more critical with increasing stimulus frequency. We conclude that this psychophysical approach reveals valid parameters for motion driving algorithms used in motion base simulators.


Author(s):  
Luc Tremblay ◽  
Andrew Kennedy ◽  
Dany Paleressompoulle ◽  
Liliane Borel ◽  
Laurence Mouchnino ◽  
...  

2006 ◽  
Vol 9 (2) ◽  
pp. 163-166 ◽  
Author(s):  
E.A. Keshner ◽  
K. Dokka ◽  
R.V. Kenyon

Author(s):  
Kathleen E. Cullen

As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world, and of our orientation relative to gravity. Essential to this computation is the information provided by the vestibular system; it detects the rotational velocity and linear acceleration of our heads relative to space, making a fundamental contribution to our perception of self-motion and spatial orientation. Additionally, in everyday life, our perception of self-motion depends on the integration of both vestibular and nonvestibular cues, including visual and proprioceptive information. Furthermore, the integration of motor-related information is also required for perceptual stability, so that the brain can distinguish whether the experienced sensory inflow was a result of active self-motion through the world or if instead self-motion that was externally generated. To date, understanding how the brain encodes and integrates sensory cues with motor signals for the perception of self-motion during natural behaviors remains a major goal in neuroscience. Recent experiments have (i) provided new insights into the neural code used to represent sensory information in vestibular pathways, (ii) established that vestibular pathways are inherently multimodal at the earliest stages of processing, and (iii) revealed that self-motion information processing is adjusted to meet the needs of specific tasks. Our current level of understanding of how the brain integrates sensory information and motor-related signals to encode self-motion and ensure perceptual stability during everyday activities is reviewed.


Sign in / Sign up

Export Citation Format

Share Document