scholarly journals Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis byMethylobacillus flagellatusKT

2013 ◽  
Vol 347 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Sergey Y. But ◽  
Valentina N. Khmelenina ◽  
Alexander S. Reshetnikov ◽  
Yuri A. Trotsenko
2019 ◽  
Vol 6 (1) ◽  
pp. 130
Author(s):  
Suwinda Fibriani ◽  
Inyana Dwi Agustien ◽  
Widhi Dyah Sawitri ◽  
Bambang Sugiharto

Genetic Transformation and Expression of Sucrose Phosphate Synthase Mutant in Tomato Plant ABSTRACTSucrose phosphate synthase (SPS) is a key enzyme responsible for sucrose biosynthesis. In its regulation, SPS activity is modulated by an allosteric effector glucose-6-phosphate (G6P) suggested to have an ability to bind SPS N-terminus domain. To understand the role of N-terminus in regulating SPS, the SPS gene was mutated with the deletion of N-terminus domain (∆N-SPS). The ∆N-SPS gen was transformed into tomato plants with 5% transformation efficiency. Three transgenic tomato plant 4.20, 5.5.1, and 5.10 were obtained and confirmed by PCR analysis. Transgenic tomato expression was characterized by enzymatic analysis. Result showed that the G6P allosteric regulation in transgenic ∆N-SPS had lost and the SPS activity increased by 2-fold compared to non-transgenic plant. This showed that N-terminus domain-deleted SPS could be actively expressed in plant. Keywords: enzyme, genetic transformation, N-terminus domain deletion, sucrose phosphate synthase, tomato ABSTRAKSucrose phosphate synthase (SPS) merupakan enzim kunci yang bertanggung jawab dalam sintesis sukrosa. Dalam regulasinya, aktifitas SPS dipengaruhi oleh alosterik efektor glukosa-6-fosfat (G6P) yang diduga dapat berikatan pada domain N-terminus SPS. Untuk mengetahui peran N-terminus pada regulasi SPS, dilakukan mutasi SPS dengan penghilangan domain N-terminus (∆N-SPS). Gen ∆N-SPS diinsersi pada tanaman tomat melalui transformasi genetik dengan efisiensi transformasi 5%. Tiga tanaman transgenik tomat (event4.20; 5.5.1; dan 5.10) didapatkan dan positif terkonfirmasi melalui analisis PCR. Ekspresi mutan dikarakterisasi melalui analisis enzimatik. Hasil menunjukkan bahwa tanaman tomat transgenik ∆N-SPS tidak dipengaruhi regulasi alosterik G6P dan aktifitas SPS 2 kali lipat lebih tinggi daripada tanaman bukan transgenik. Ini menunjukkan bahwa SPS dengan delesi domain N-terminus dapat terekspresi aktif pada tanaman.  Kata Kunci: delesi domain N-terminus, enzim, sucrose phosphate synthase, tomat, transformasi genetik 


1991 ◽  
Vol 96 (2) ◽  
pp. 473-478 ◽  
Author(s):  
Jean-Michel Bruneau ◽  
Ann C. Worrell ◽  
Bernard Cambou ◽  
Danielle Lando ◽  
Toni A. Voelker

2002 ◽  
Vol 29 (5) ◽  
pp. 569 ◽  
Author(s):  
Rui Zhou ◽  
Richard C. Sicher ◽  
Bruno Quebedeaux

Sucrose-phosphate synthase (SPS) from mature apple (Malus domestica Borhk. cv. Gala) leaves was purified 34-fold to a final specific activity of 15.3 μmol mg–1 protein h–1. The enzyme showed hyperbolic saturation kinetics for both fructose-6-phosphate (F6P) (Km= 0.36 mM) and uridine-5′-diphosphoglucose (UDPG) (Km = 6.49 mM). Glucose-6-phosphate (G6P) was found to be an activator of apple SPS, and the activation was dependent upon the F6P concentration. At a concentration of 2 mM, G6P significantly decreased the Km for F6P and increased SPS activity. However, higher concentrations of G6P did not further stimulate SPS activity. In contrast to SPS from other plant species, inorganic phosphate (Pi) had little or no inhibitory effect on apple SPS. The apple leaf enzyme was inhibited 7–10% by 10 mM Pi when F6P concentrations were in the range of 2–10 mM. We observed that sorbitol-6-phosphate, an intermediate metabolite in sorbitol biosynthesis, was a competitive inhibitor of SPS with a Ki of 1.83 mM. Sorbitol-6-phosphate also inhibited G6P activation of SPS. Our results suggest that sucrose biosynthesis may be altered by the products of sorbitol biosynthesis in apple leaves.


1984 ◽  
Vol 34 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Thomas W. Rufty ◽  
Steven C. Huber ◽  
Phillip S. Kerr

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186650 ◽  
Author(s):  
Juan Wang ◽  
Junjie Du ◽  
Xiaopeng Mu ◽  
Pengfei Wang

The use of elasticity coefficients and flux-control coefficients in a quantitative treatment of control is discussed, with photosynthetic sucrose synthesis as an example. Experimental values for elasticities for the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase are derived from their in vitro properties, and from an analysis of the in vivo relation between fluxes and metabolite levels. An empirical factor α , describing the response of the fructose 2,6-bisphosphate regulator cycle to fructose 6-phosphate is described, and an expression is derived relating α to the elasticities of the enzymes involved in this regulator cycle. The in vivo values for elasticities and α are then used in a modified form of the connectivity theorem to estimate the flux control coefficients of the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase during rapid photosynthetic sucrose synthesis.


Sign in / Sign up

Export Citation Format

Share Document