Species delimitation inCladonia(Ascomycota): a challenge to the DNA barcoding philosophy

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Raquel Pino-Bodas ◽  
María P. Martín ◽  
Ana R. Burgaz ◽  
H. Thorsten Lumbsch
2019 ◽  
Author(s):  
◽  
Morgan Gueuning

Wild bees are essential pollinators and therefore play a key role in both natural and agricultural ecosystems. However, bees have often been neglected in conservation studies and policies worldwide, which is surprising given their ecological importance. As a result, little is known on the conservation status of the vast majority of wild bee species in Europe, and even less worldwide. Limited surveys suggest important declines in the abundance and diversity of most wild bee communities worldwide. It is therefore urgent to implement targeted measures for the conservation of these keystone species. Once implemented, the effectiveness of these measures must be evaluated using adequate monitoring programs. To date, wild bee surveys are entirely based on morphological identification, which is both labor intensive and time consuming. Consequently, an affordable, high-throughput identification method is needed to reduce costs and improve bee monitoring. The objective of this thesis was to evaluate novel genetic techniques based on Next Generation Sequencing (NGS) methods for facilitating surveys of wild bees. NGS tools were mainly investigated for bridging two important impediments to wild bee conservation efforts, i.e., the cost of biodiversity assessment schemes and taxonomic incompleteness. With the development of NGS techniques, DNA barcoding has gained enormous momentum, enabling cost-effective, fast and accurate identifications. Before these methods can be routinely used in monitoring programs, there are however still important knowledge gaps to fill. These gaps mainly concern the detection of rare species and the acquisition of accurate quantitative data on species abundance; more generally the cost and labour effectiveness of these methods need to be evaluated. To provide a comprehensive presentation of the advantages and weaknesses of different NGS-based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data, we found that NGS barcoding performed best for both species’ presence/absence and abundance data, producing only few false positives and no false negatives. The other methods investigated were less reliable in term of species detection and inference of abundance data, and partly led to erroneous ecological conclusions. In terms of workload and cost, we showed that NGS techniques were more expensive than morphological identification with our dataset, although these techniques would become slightly more economical in large-scale monitoring programs. A second aim of this thesis was to provide an easy and robust genomic solution to alleviate taxonomical incompleteness, one of the major impediments to the effective conservation of many insect taxa. For conservation purposes, having stable and well-delimited species hypotheses is essential. Currently, most species are delimitated based on morphology and/or DNA barcoding. These methods are however associated with important limitations, and it is widely accepted that species delimitation should rely on multi-locus genomic markers. To overcome these limitations, ultraconserved elements (UCEs) were tested as a fast and robust approach using different species-complexes harbouring cryptic diversity, mitochondrial introgression, or mitochondrial paraphyly. Phylogenetic analyses of UCEs were highly conclusive and yielded meaningful species delimitation hypotheses in all cases. These results provide strong evidence for the potential of UCEs as a fast method for delimiting species even in cases of recently diverged lineages. Advantages and limitations of UCEs for shallow phylogenetic studies are further discussed.


Author(s):  
Daniel Lukic ◽  
Jonas Eberle ◽  
Jana Thormann ◽  
Carolus Holzschuh ◽  
Dirk Ahrens

DNA-barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affect the accuracy and performance of DNA-barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical data set sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivore chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analysed for a total of 186 individuals of 56 morphospecies. Tree based and distance based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. PTP and TCS prevailingly over-splitted morphospecies, while 3% clustering and ABGD also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs were discussed in the context of historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.


Zootaxa ◽  
2016 ◽  
Vol 4079 (5) ◽  
pp. 534 ◽  
Author(s):  
CHAO SONG ◽  
QIAN WANG ◽  
RUILEI ZHANG ◽  
BINGJIAO SUN ◽  
XINHUA WANG

Author(s):  
Vladimir Pešić ◽  
Harry Smit ◽  
Pınar Gülle ◽  
Miroslawa Dabert

Species of the mite genus Protzia Piersig, 1896 are diverse and sometimes highly abundant freshwater mites. Here, we provide COI barcodes for five species (Protzia rugosa, P. rotunda, P. halberti, P. cabardinica, P. longiacetabulata) and use them for species delimitation analyses accompanied with morphological comparisons. As a result, we resurrected the species P. cabardinica (Sokolow, 1940). Based on morphology only, we describe three new species, P. kyrgyzica sp. nov. and P. tienshanensis sp. nov., from Kyrgyzstan and P. iranica sp. nov. from southern Iran. Furthermore, we describe the male of P. longiacetabulata from Turkey, which was not known previously.


ZooKeys ◽  
2013 ◽  
Vol 365 ◽  
pp. 337-354 ◽  
Author(s):  
Kowiyou Yessoufou ◽  
Herman Van Der Bank ◽  
Dai Herbert ◽  
Richard Greenfield

Genome ◽  
2018 ◽  
Vol 61 (8) ◽  
pp. 615-624 ◽  
Author(s):  
Chia-Hao Chang ◽  
Wei-Yu Dai ◽  
Ting-Yu Chen ◽  
An-Hsin Lee ◽  
Hsuan-Yi Hou ◽  
...  

Compared to traditional morphological identification, DNA barcoding—molecular identification based on sequencing of a segment of mitochondrial cytochrome c oxidase subunit I (COI)—provides a shortcut to authenticating chelonian identifications. Here, we selected 63 government-seized chelonian specimens deposited at Taipei Zoo for DNA barcoding analysis. DNA barcoding and subsequent phylogenetic analysis successfully authenticated 36 chelonian species, including five that are listed in CITES Appendix I. Approximately 90% (57/63) of the specimens were successfully authenticated by our molecular approach, but lack or error of BOLD reference sequences, biological processes such as hybridization, and uncertain species delimitation all reduced the accuracy of DNA barcoding. To increase the accuracy of DNA barcoding, Taipei Zoo will continue to enrich the BOLD database and also establish a genetic database, to include additional genetic markers, by using government-seized chelonian specimens. A fast and accurate method to authenticate seized samples could assist law enforcement agencies to prosecute criminals and restrict illegal exploitation of wild chelonian resources.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3516 ◽  
Author(s):  
Sohath Z. Yusseff-Vanegas ◽  
Ingi Agnarsson

Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identifying immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study, recovering substantial geographic variation forLucilia eximia, Lucilia retroversa, Lucilia ricaandChloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance of employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids, and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.


Sign in / Sign up

Export Citation Format

Share Document