ARCHAEOLOGICAL MAGNETIC SURVEY TO FIND SALT PRODUCTION SITES, USING LOCATED EULER DECONVOLUTION: AN APPLICATION IN ONCHON COUNTY, NAMPHO, DPRK

Archaeometry ◽  
2021 ◽  
Author(s):  
Hyon‐Ryong Pang ◽  
Jun‐Myong Jon
2021 ◽  
Vol 14 (1) ◽  
pp. 19-23

Abstract: Depth estimation of magnetic source bodies in parts of the Schist Belt of Kano, using Euler Deconvolution is presented in this paper. Detail ground magnetic survey was carried out using SCINTREX proton precession magnetometer to produce the Total Magnetic Intensity (TMI) map and consequently the residual map. The TMI ranges from 34,261 nT to 34,365 nT, while the residual field ranges from -160 nT to 115 nT. The depth estimate for contacts ranges from 6.5 m to 39.8 m, while that of dyke ranges from 8.9 m to 51.3 m. The depth estimation presented in this work is compared with the results of aeromagnetic study carried out in the same area and found to agree fairly well. Further, this also ensures the validity of aeromagnetic investigation in such applications. Keywords: Contacts, Dykes, Euler Deconvolution, Schist Belt. PACS: 91.25.F and 91.25.Rt.


2020 ◽  
Vol 12 (3) ◽  
pp. 452 ◽  
Author(s):  
Yaxin Mu ◽  
Xiaojuan Zhang ◽  
Wupeng Xie ◽  
Yaoxin Zheng

Great progress has been made in the integration of Unmanned Aerial Vehicle (UAV) magnetic measurement systems, but the interpretation of UAV magnetic data is facing serious challenges. This paper presents a complete workflow for the detection of the subsurface objects, like Unexploded Ordnance (UXO), by the UAV-borne magnetic survey. The elimination of interference field generated by the drone and an improved Euler deconvolution are emphasized. The quality of UAV magnetic data is limited by the UAV interference field. A compensation method based on the signal correlation is proposed to remove the UAV interference field, which lays the foundation for the subsequent interpretation of UAV magnetic data. An improved Euler deconvolution is developed to estimate the location of underground targets automatically, which is the combination of YOLOv3 (You Only Look Once version 3) and Euler deconvolution. YOLOv3 is a deep convolutional neural network (DCNN)-based image and video detector and it is applied in the context of magnetic survey for the first time, replacing the traditional sliding window. The improved algorithm is more satisfactory for the large-scale UAV-borne magnetic survey because of the simpler and faster workflow, compared with the traditional sliding window (SW)-based Euler method. The field test is conducted and the experimental results show that all procedures in the designed routine is reasonable and effective. The UAV interference field is suppressed significantly with root mean square error 0.5391 nT and the improved Euler deconvolution outperforms the SW Euler deconvolution in terms of positioning accuracy and reducing false targets.


2020 ◽  
Author(s):  
Ahmed Khalil ◽  
Ahmed El Emam ◽  
Tharwat Abdel Hafeez ◽  
Hassan Saleh ◽  
Waheed Mohamed

<p>The aim of this work is to study the subsurface structures in the west Beni Suef area of the Western Desert in Egypt and to determine their effects on surface geologic structures. A detailed land magnetic survey has been carried out for the total component of the geomagnetic field using two proton magnetometers. The necessary corrections concerning daily variation, the regional gradient and time variations have been applied. Then, the total magnetic intensity anomaly map (TMI) has been constructed and transformed to the reduced to the pole magnetic map (RTP). The reduction-to-pole magnetic and Bouguer anomaly maps were used to obtain regional extensions of this subsurface structure. Regional–residual separation is carried out using the power spectrum. Also, Edge detection techniques are applied to delineate the structure and hidden anomalies. Data analysis was performed using trend analysis, Euler deconvolution, the results indicate that the area is affected by tectonic forces in the N-S, NW-SE, NE-SW and E-W trends, which are correlated with the directions of surface geologic lineaments. In addition, depths to the basement rocks have been estimated using spectral analysis technique. The computed depths have been used to construct the basement relief map which resulted from gravity and magnetic data. They show that the depth to the basement rocks ranges from 2.3 km to 4.7 km.</p><p><strong>KEYWORDS</strong><strong><br></strong>Land magnetic, Gravity, Euler deconvolution, Edge detection and Spectral analysis.</p>


1939 ◽  
Vol 8 (23) ◽  
pp. 276-278
Author(s):  
John R. Stewart

2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


Sign in / Sign up

Export Citation Format

Share Document