Predation impact of common backswimmer (Notonecta glauca L.) on juvenile narrow-clawed crayfish (Astacus leptodactylus Esch.)

2018 ◽  
Vol 49 (5) ◽  
pp. 2072-2077
Author(s):  
Dariusz Ulikowski ◽  
Łucjan Chybowski ◽  
Piotr Traczuk
1979 ◽  
Vol 78 (1) ◽  
pp. 281-293
Author(s):  
MIKKO HARRI ◽  
ERNST FLOREY

1. Crayfish, Astacus leptodactylus, were acclimated to 12 °C and to 25 °C. Nerve muscle preparations (closer muscle of walking legs) were subjected to temperatures ranging from 6 to 32 °C. 2. The resting membrane potential of muscle fibres was found to increase with temperature in a linear manner, but with a change in slope at around 170 in cold-acclimated preparations, and around 24 °C in warm-acclimated ones. 3. Temperature acclimation shifted the temperature range of maximal amplitudes of fast and slow e.j.p.s toward the acclimation temperature. Optimal facilitation of slow e.j.p.s also occurred near the respective acclimation temperature. 4. E.j.p. decay time is nearly independent of temperature in the upper temperature range but increases steeply when the temperature falls below a critical range around 17 °C in preparations from cold-acclimated animals, and around 22 °C after acclimation to 25 °C. 5. Peak depolarizations reached by summating facilitated e.j.p.s are conspicuously independent of temperature over a wide range (slow and fast e.j.p.s of cold-acclimated preparations, fast e.j.p.s of warm-acclimated ones) which extends to higher temperatures after warm acclimation in the case of fast e.j.p.s. In warm-acclimated preparations the peak depolarization of slow e.j.p.s first falls then rises and falls again as the temperature increases from 8 to 32 °C. 6. Tension development elicited by stimulation of the slow axon at a given frequency reaches maximal values at the lower end of the temperature range in cold-acclimated preparations. The maximum is shifted towards 20 °C after warm acclimation. Fast contractions decline with temperature; possible acclimation effects are masked by the great lability of fast contractions in warm-acclimated preparations. 7. It is suggested that changes in the composition of membrane lipids may be responsible for the effects of acclimation on the electrical parameters and their characteristic temperature dependence.


2001 ◽  
Vol 204 (5) ◽  
pp. 933-940 ◽  
Author(s):  
J. Forgue ◽  
A. Legeay ◽  
J.C. Massabuau

Numerous water-breathers exhibit a gas-exchange regulation strategy that maintains O(2) partial pressure, P(O2), in the arterial blood within the range 1–3 kPa at rest during the daytime. In a night-active crustacean, we examined whether this could limit the rate of O(2)consumption (M(O2)) of locomotor muscles and/or the whole body as part of a coordinated response to energy conservation. In the crayfish Astacus leptodactylus, we compared the in vitro relationship between the M(O2) of locomotor muscles as a function of the extracellular P(O2) and P(CO2) and in vivo circadian changes in blood gas tensions at various values of water P(O2). In vitro, the M(O2) of locomotor muscle, either at rest or when stimulated with CCCP, was O(2)-dependent up to an extracellular P(O2) of 8–10 kPa. In vivo, the existence of a night-time increase in arterial P(O2) of up to 4 kPa at water P(O2) values of 20 and 40 kPa was demonstrated, but an experimental increase in arterial P(O2) during the day did not lead to any rise in whole-body M(O2). This suggested that the low blood P(O2) in normoxia has no global limiting effect on daytime whole-body M(O2). The participation of blood O(2) status in shaping the circadian behaviour of crayfish is discussed.


Sign in / Sign up

Export Citation Format

Share Document