scholarly journals Is the resting rate of oxygen consumption of locomotor muscles in crustaceans limited by the low blood oxygenation strategy?

2001 ◽  
Vol 204 (5) ◽  
pp. 933-940 ◽  
Author(s):  
J. Forgue ◽  
A. Legeay ◽  
J.C. Massabuau

Numerous water-breathers exhibit a gas-exchange regulation strategy that maintains O(2) partial pressure, P(O2), in the arterial blood within the range 1–3 kPa at rest during the daytime. In a night-active crustacean, we examined whether this could limit the rate of O(2)consumption (M(O2)) of locomotor muscles and/or the whole body as part of a coordinated response to energy conservation. In the crayfish Astacus leptodactylus, we compared the in vitro relationship between the M(O2) of locomotor muscles as a function of the extracellular P(O2) and P(CO2) and in vivo circadian changes in blood gas tensions at various values of water P(O2). In vitro, the M(O2) of locomotor muscle, either at rest or when stimulated with CCCP, was O(2)-dependent up to an extracellular P(O2) of 8–10 kPa. In vivo, the existence of a night-time increase in arterial P(O2) of up to 4 kPa at water P(O2) values of 20 and 40 kPa was demonstrated, but an experimental increase in arterial P(O2) during the day did not lead to any rise in whole-body M(O2). This suggested that the low blood P(O2) in normoxia has no global limiting effect on daytime whole-body M(O2). The participation of blood O(2) status in shaping the circadian behaviour of crayfish is discussed.

1994 ◽  
Vol 266 (1) ◽  
pp. E151-E154 ◽  
Author(s):  
T. J. Kowalski ◽  
M. Watford

Information about adipose tissue amino acid metabolism is limited, with most data derived from studies in vitro. The purpose of this study was to further characterize the role of adipose tissue in glutamine metabolism in the rat in vivo. The extracellular concentrations of glutamine, glutamate, alanine, and ammonia were measured in the rat inguinal fat pad using a microdialysis sampling technique. A calibration method was used to accurately assess the extracellular levels of metabolites, and a comparison of these concentrations with those in arterial blood allowed determination of the net flux of each compound. The adipose tissue-arterial blood concentration differences were 122 +/- 19, 54 +/- 37, -61 +/- 21, and -28 +/- 13 microM for glutamine, alanine, glutamate, and ammonia, respectively, indicating a production of glutamine and an uptake of glutamate by subcutaneous adipose tissue. The magnitude of glutamine production suggests that adipose tissue may play a significant role in whole body glutamine homeostasis.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianru Pan ◽  
Huocong He ◽  
Ying Su ◽  
Guangjin Zheng ◽  
Junxin Wu ◽  
...  

GST-TAT-SOD was the fusion of superoxide dismutase (SOD), cell-permeable peptide TAT, and glutathione-S-transferase (GST). It was proved to be a potential selective radioprotector in vitro in our previous work. This study evaluated the in vivo radioprotective activity of GST-TAT-SOD against whole-body irradiation. We demonstrated that intraperitoneal injection of 0.5 ml GST-TAT-SOD (2 kU/ml) 2 h before the 6 Gy whole-body irradiation in mice almost completely prevented the splenic damage. It could significantly enhance the splenic antioxidant activity which kept the number of splenic white pulp and consequently resisted the shrinkage of the spleen. Moreover, the thymus index, hepatic antioxidant activity, and white blood cell (WBC) count of peripheral blood in irradiated mice pretreated with GST-TAT-SOD also remarkably increased. Although the treated and untreated irradiated mice showed no significant difference in the growth rate of animal body weight at 7 days postirradiation, the highest growth rate of body weight was observed in the GST-TAT-SOD-pretreated group. Furthermore, GST-TAT-SOD pretreatment increased resistance against 8 Gy whole-body irradiation and enhanced 30 d survival. The overall effect of GST-TAT-SOD seemed to be a bit more powerful than that of amifostine. In conclusion, GST-TAT-SOD would be a safe and potentially promising radioprotector.


Gerontology ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 216-227 ◽  
Author(s):  
Peter Sandner ◽  
Peter Berger ◽  
Christoph Zenzmaier

Fibrotic diseases cause high rates of morbidity and mortality, and their incidence increases with age. Despite intense research and development efforts, effective and well-tolerated antifibrotic treatments are scarce. Transforming growth factor-β signaling, which is widely considered the most important profibrotic factor, causes a pro-oxidant shift in redox homeostasis and a concomitant decrease in nitric oxide (NO) signaling. The NO/cyclic guanosine monophosphate (cGMP) signaling cascade plays a pivotal role in the regulation of cell and organ function in whole-body hemostasis. Increases in NO/cGMP can lead to relaxation of smooth muscle cells triggering vasorelaxation. In addition, there is consistent evidence from preclinical in vitro and in vivo models that increased cGMP also exerts antifibrotic effects. However, most of these findings are descriptive and the molecular pathways are still being investigated. Furthermore, in a variety of fibrotic diseases and also during the natural course of aging, NO/cGMP production is low, and current treatment approaches to increase cGMP levels might not be sufficient. The introduction of compounds that specifically target and stimulate soluble guanylate cyclase (sGC), the so called sGC stimulators and sGC activators, might be able to overcome these limitations and could be ideal tools for investigating antifibrotic mechanisms in vitro and in vivo as they may provide effective treatment strategies for fibrotic diseases. These drugs increase cGMP independently from NO via direct modulation of sGC activity, and have synergistic and additive effects to endogenous NO. This review article describes the NO/cGMP signaling pathway and its involvement in fibrotic remodeling. The classes of sGC modulator drugs and their mode of action are described. Finally, the preclinical in vitro and in vivo findings and antifibrotic effects of cGMP elevation via sGC modulation are reviewed. sGC stimulators and activators significantly attenuate tissue fibrosis in a variety of internal organs and in the skin. Moreover, these compounds seem to have multiple intervention sites and may reduce extracellular matrix formation, fibroblast proliferation, and myofibroblast activation. Thus, sGC stimulators and sGC activators may offer an efficacious and tolerable therapy for fibrotic diseases, and clinical trials are currently underway to assess the potential benefit for patients with systemic sclerosis.


1983 ◽  
Vol 58 (3) ◽  
pp. 356-361 ◽  
Author(s):  
Michael P. McIlhany ◽  
Lydia M. Johns ◽  
Thomas Leipzig ◽  
Nicholas J. Patronas ◽  
Frederick D. Brown ◽  
...  

✓ Partially purified protein from washed and artificially hemolyzed erythrocytes, known to cause significant contractions of isolated canine cerebral vessels in vitro, was injected into the cisterna magna of intact anesthetized dogs. Cerebral blood flow, measured by the xenon-133 washout technique, decreased from a control value of 49.5 ± 1.17 ml/100 gm/min to an experimental value of 34.1 ± 1.65 ml/100 gm/min at 2 hours. Cerebral vascular resistance rose from a control value of 2.05 ± 0.17 PRU (peripheral resistance units) to an experimental value of 2.91 ± 0.25 PRU at 2 hours. Mean arterial blood pressure, heart rate, intracranial pressure, and cerebral perfusion pressure remained stable. Cardiac output also fell significantly (in 2-hour control animals it was 2.89 ± 0.37 liter/min, and in 2-hour experimental animals 1.43 ± 0.13 liter/min) and peripheral vascular resistance rose. These changes were evident by 10 minutes after the cisternal injection of the hemolysate protein, and remained for the duration of the 2-hour monitoring period. Serial vertebrobasilar angiograms demonstrated marked narrowing of the intracranial basilar artery when compared to control values. The narrowing persisted for several days in most animals, and tended to increase with time. Relaxation occurred by the 10th through the 14th day. The authors conclude that this experimental preparation may be a useful model for both in vitro and in vivo investigation of chronic cerebral vasospasm.


1987 ◽  
Vol 252 (6) ◽  
pp. G832-G839 ◽  
Author(s):  
A. P. Shepherd ◽  
G. L. Riedel ◽  
J. W. Kiel ◽  
D. J. Haumschild ◽  
L. C. Maxwell

Several laser-Doppler blood flowmeters are now commercially available; however, only one utilizes an infrared laser diode (Laserflo, TSI, St. Paul, MN). Because of this and other unique features such as its microprocessor-based signal analyzer, we evaluated this device's ability to measure tissue perfusion. Initially, we determined whether laser illumination directly affected the microvasculature. Intravital microscopic observations in the hamster cremaster muscle indicated that neither He-Ne nor infrared laser light affected the diameters of arterioles that were responsive to vasoactive agents. To test the flowmeter for linearity and repeatability, we used a rotating disk to simulate a light-scattering, flowing medium. The "flow" signal was highly correlated (r = 0.99) with the rotational velocity of the disk, was consistent among flow probes, and showed a high degree of reproducibility. The second model consisted of microsphere suspensions pumped through cuvettes. The laser-Doppler velocimeter (LDV) flow signal was linear with respect to pump output. With red blood cells in the perfusate, we examined the effects of blood oxygenation on the flowmeter's performance. The LDV flow signal was unaffected by changes in blood oxygenation. We evaluated linearity in vivo in isolated, perfused rat livers and in isolated canine gastric flaps. We observed linear relationships between total flow and laser-Doppler flow measured on the surface of the liver (r = 0.98) and in the gastric mucosa (r = 0.98), but the slopes of the relationships between total and local LDV flow showed considerable variability not noted in the in vitro studies.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document