Three-dimensional models once again: For research and teaching of early human development

2013 ◽  
Vol 53 (1) ◽  
pp. 58-59 ◽  
Author(s):  
Naoki Shiraishi ◽  
Shigehito Yamada ◽  
Tetsuya Takakuwa
2015 ◽  
Vol 43 (2) ◽  
Author(s):  
Ritsuko Kimata Pooh ◽  
Asim Kurjak

AbstractRecent development of three-dimensional (3D) high definition (HD) ultrasound has resulted in remarkable progress in visualization of early embryos and fetuses in sonoembryology. The new technology of HDlive assesses both structural and functional developments in the first trimester with greater reliably than two-dimensional (2D) ultrasound. The ability to visualize not only fetal face, hands, fingers, feet, and toes, but also amniotic membranes, is better with volumetric ultrasound than 2D ultrasound. In this article, detailed and comprehensive structures of normal and abnormal fetuses depicted by 3D HDlive are presented, including various faces of Down’s syndrome and holoprosencephaly, as well as low-set ear and finger/toe abnormalities from the first trimester. Three-dimensional HDlive further “humanizes” the fetus, enables detailed observation of the fetal face in the first trimester as shown in this article, and reveals that a small fetus is not more a fetus but a “person” from the first trimester. There has been an immense acceleration in understanding of early human development. The anatomy and physiology of embryonic development is a field where medicine exerts greatest impact on early pregnancy at present, and it opens fascinating aspects of embryonic differentiation. Clinical assessment of those stages of growth relies heavily on 3D/four-dimensional (4D) HDlive, one of the most promising forms of noninvasive diagnostics and embryological phenomena, once matters for textbooks are now routinely recorded with outstanding clarity. New advances deserve the adjective “breathtaking”, including 4D parallel study of the structural and functional early human development.


2005 ◽  
Vol 84 (5) ◽  
pp. 1285-1299 ◽  
Author(s):  
Asim Kurjak ◽  
Ritsuko K. Pooh ◽  
Luis T. Merce ◽  
Jose M. Carrera ◽  
Aida Salihagic-Kadic ◽  
...  

1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2011 ◽  
Vol 49 (4) ◽  
pp. 326-327 ◽  
Author(s):  
Karen A. Eley ◽  
Robin Richards ◽  
Dermot Dobson ◽  
Alf Linney ◽  
Stephen R. Watt-Smith

Sign in / Sign up

Export Citation Format

Share Document