scholarly journals Investigation of reverse torque effect on bone stress levels in peri‐implantitis defects‐ finite element analysis

2019 ◽  
Vol 30 (S19) ◽  
pp. 145-145
Author(s):  
Ahu Uraz ◽  
Deniz Cetiner ◽  
Yucel Ozdemir ◽  
Janset Sengul
2008 ◽  
Vol 79 (11) ◽  
pp. 2166-2172 ◽  
Author(s):  
Jason Schrotenboer ◽  
Yi-Pin Tsao ◽  
Vipul Kinariwala ◽  
Hom-Lay Wang

10.2341/08-73 ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 223-229 ◽  
Author(s):  
A. O. Spazzin ◽  
D. Galafassi ◽  
A. D. de Meira-Júnior ◽  
R. Braz ◽  
C. A. Garbin

Clinical Relevance According to finite element analysis, the zirconia ceramic post created higher stress levels in the post and slightly less in dentin compared with glass fiber posts. Resin cement with a high elastic modulus created higher stress levels in the cement layer. The different film thicknesses of cement did not create significant changes in stress levels.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Mohammad Shafinul Haque ◽  
Calvin Maurice Stewart

The creep deformation and damage evolution of nickel base superalloy (Waspaloy) at 700 °C are studied using the classic Kachanov–Rabotnov (KR) and a recently developed Sin-hyperbolic (Sinh) model. Uniaxial creep deformation and Bridgman rupture data collected from literature are used to determine the model constants and to compare the KR and the Sinh solutions. Finite-element (FE) simulations on a single eight-node element are conducted to validate the accuracy of the FE code. It is observed that KR cannot predict the creep deformation, damage, and rupture life of nickel base superalloys accurately using one set of constants for all the stress levels. The Sinh model exhibits a superior ability to predict the creep behavior using one set of constants for all the stress levels. Finite-element analysis (FEA) on 3D Bridgman notched Waspaloy specimen using the Sinh model is conducted. The results show that the Sinh model when combined with a representative stress equation and calibrated with experimental data can accurately predict the “notch effect” observed in the rupture life of notched specimen. Contour plots of damage evolution and stress redistribution are presented. It is demonstrated that the Sinh model is less stress sensitive, produces unconditional critical damage equal to unity at rupture, exhibits a more realistic damage distribution around the crack tip, and offers better crack growth analysis than KR.


2007 ◽  
Vol 342-343 ◽  
pp. 829-832
Author(s):  
J.M. Luo ◽  
L. Zheng ◽  
X.H. Shi ◽  
Yao Wu ◽  
Xing Dong Zhang

Stress concentration is one of the main mechanical problems leading to the failure of clinical application for osteointegrated implant of percutaneous osteointegrated prosthesis, which is especially marked for higher amputated leg prosthesis. Traditionally design was composed of only the distal part. To improve the biomechanical safety, a new design with the lag part similar to the lag screw was introduced. Based on CT scan data, relatively accurate model of femur for finite element analysis (FEA) were obtained. The FEA results with the new implant demonstrated that compared to traditional design, the declination of bone stress peak ranged from 15.68% to 28.67%, perpendicular deformation from 34.73% to 72.16%, and maximal stress of implant from 14.51% to 23.36% with the increasing of loads from 3750N to 2000N. So the new design of osteointegrated implant would be more secure mechanically, in the case of higher amputated leg attachment.


Sign in / Sign up

Export Citation Format

Share Document