scholarly journals Suppressing synchronous firing of epileptiform activity by high‐frequency stimulation of afferent fibers in rat hippocampus

Author(s):  
Zhaoxiang Wang ◽  
Zhouyan Feng ◽  
Yue Yuan ◽  
Lvpiao Zheng
1984 ◽  
Vol 52 (5) ◽  
pp. 980-993 ◽  
Author(s):  
W. F. Collins ◽  
M. G. Honig ◽  
L. M. Mendell

Excitatory postsynaptic potentials (EPSPs) were recorded in medial gastrocnemius (MG) motoneurons following intraaxonal electrical stimulation of single spindle afferent fibers in anesthetized cats. High-frequency bursts of 32 shocks were delivered to the afferent axon and the EPSPs were averaged in the motoneuron. EPSP amplitude generally changed during the burst, in some cases increasing and in other cases decreasing, depending on the connection. Interpretation of these changes was complicated by potentiation of the initial EPSPs in the burst that occurred with the repeated bursts. The extent of the potentiation varied from connection to connection. The magnitude of facilitation or depression during a burst of standard frequency (167 Hz) was determined by comparison of EPSPs at the end of the burst with the mean EPSP obtained during low-frequency stimulation (18 Hz). Large amplitude EPSPs tended to depress, whereas the small amplitude EPSPs facilitated. Facilitation was more prevalent in motoneurons with large rheobases and depression was more often observed in small rheobase motoneurons. The use of partial correlations, which was necessary because of the inverse correlation between EPSP amplitude and motoneuron rheobase, revealed that facilitation-depression behavior during repetitive stimulation is correlated primarily with EPSP amplitude rather than with motoneuron rheobase. Acute transection of the spinal cord resulted in no change in motoneuron rheobase but considerable enlargement of mean EPSP amplitude at low frequencies of stimulation. A significant increase in the amount of depression during repetitive stimulation was noted under these conditions. These results indicate considerable heterogeneity in the response of individual connections to repetitive stimulation. We suggest that this heterogeneity results from differences in transmitter release at different connections. This heterogeneity must also have functional consequences related to susceptibility for firing of different motoneurons under various physiological conditions that can include afferent discharge frequencies equivalent to those used in this study.


2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


2019 ◽  
Author(s):  
Sebastiano Bariselli ◽  
Nanami Miyazaki ◽  
Alexxai Kravitz

AbstractStimulants are one of the most widely prescribed classes of pharmaceuticals, but it is unclear which brain pathways underlie their therapeutic and adverse actions. Here, with real-time monitoring of circuit plasticity, we demonstrate that psychostimulants strengthen orbitofrontal (OFC) to dorsomedial striatum (DMS) pathway synapses, and increase striatal output in awake mice. In vivo high-frequency stimulation of OFC-DMS pathway blocked stimulant-induced potentiation and the expression of locomotor sensitization, thereby directly linking OFC-DMS plasticity to hyperactivity.


2002 ◽  
Vol 17 (1) ◽  
pp. 204-207 ◽  
Author(s):  
Pierre Burbaud ◽  
Alain Rougier ◽  
Xavier Ferrer ◽  
Dominique Guehl ◽  
E. Cuny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document