motor thalamus
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Darcy A Diesburg ◽  
Jeremy DW Greenlee ◽  
Jan R Wessel

Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1813
Author(s):  
Barbara Kosmowska ◽  
Jadwiga Wardas

Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.


2021 ◽  
pp. JN-RM-1753-21
Author(s):  
Kouichi C. Nakamura ◽  
Andrew Sharott ◽  
Takuma Tanaka ◽  
Peter J. Magill

2021 ◽  
Author(s):  
Kouichi C. Nakamura ◽  
Andrew Sharott ◽  
Takuma Tanaka ◽  
Peter J. Magill

AbstractThe cerebral cortex, basal ganglia and motor thalamus form circuits important for purposeful movement. In Parkinsonism, basal ganglia neurons often exhibit dysrhythmic activity during, and with respect to, the slow (∼1 Hz) and beta-band (15–30 Hz) oscillations that emerge in cortex in a brain state-dependent manner. There remains, however, a pressing need to elucidate the extent to which motor thalamus activity becomes similarly dysrhythmic after dopamine depletion relevant to Parkinsonism. To address this, we recorded single-neuron and ensemble outputs in the ‘basal ganglia-recipient zone’ (BZ) and ‘cerebellar-recipient zone’ (CZ) of motor thalamus in anesthetized male dopamine-intact rats and 6-OHDA-lesioned rats during two brain states, respectively defined by cortical slow-wave activity and activation. Two forms of thalamic input zone-selective dysrhythmia manifested after dopamine depletion: First, BZ neurons, but not CZ neurons, exhibited abnormal phase-shifted firing with respect to cortical slow oscillations prevalent during slow-wave activity; secondly, BZ neurons, but not CZ neurons, inappropriately synchronized their firing and engaged with the exaggerated cortical beta oscillations arising in activated states. These dysrhythmias were not accompanied by the thalamic hypoactivity predicted by canonical firing rate-based models of circuit organization in Parkinsonism. Complementary recordings of neurons in substantia nigra pars reticulata suggested their altered activity dynamics could underpin the BZ dysrhythmias. Finally, pharmacological perturbations demonstrated that ongoing activity in the motor thalamus bolsters exaggerated beta oscillations in motor cortex. We conclude that BZ neurons are selectively primed to mediate the detrimental influences of abnormal slow and beta-band rhythms on circuit information processing in Parkinsonism.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jennifer L. Magnusson ◽  
Daniel K. Leventhal

Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard “rate models” of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This “paradox of stereotaxic surgery” was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.


2021 ◽  
Author(s):  
James C Dooley ◽  
Greta Sokoloff ◽  
Mark S Blumberg

To execute complex behavior with temporal precision, adult animals use internal models to predict the sensory consequences of self-generated movement. Here, taking advantage of the unique kinematic features of twitches-the brief, discrete movements of active sleep-we captured the developmental onset of a cerebellar-dependent internal model. Using rats at postnatal days (P) 12, P16, and P20, we compared neural activity in two thalamic structures: the ventral posterior (VP) and ventral lateral (VL) nuclei, both of which receive somatosensory input but only the latter of which receives cerebellar input. At all ages, twitch-related activity in VP lagged behind movement, consistent with sensory processing; similar activity was observed in VL through P16. At P20, however, VL activity precisely mimicked the twitch itself, a pattern of activity that depended on cerebellar input. Altogether, these findings implicate twitches in the development and refinement of internal models of movement.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252565
Author(s):  
Clara Rodriguez-Sabate ◽  
Manuel Rodriguez ◽  
Ingrid Morales

Two new recurrence plot methods (the binary recurrence plot and binary cross recurrence plot) were introduced here to study the long-term dynamic of the primary motor cortex and its interaction with the primary somatosensory cortex, the anterior motor thalamus of the basal ganglia motor loop and the precuneous nucleus of the default mode network. These recurrence plot methods: 1. identify short-term transient interactions; 2. identify long-lasting delayed interactions that are common in complex systems; 3. work with non-stationary blood oxygen level dependent (BOLD) data; 4. may study the relationship of centers with non-linear functional interactions; 5 may compare different experimental groups performing different tasks. These methods were applied to BOLD time-series obtained in 20 control subjects and 20 Parkinson´s patients during the execution of motor activity and body posture tasks (task-block design). The binary recurrence plot showed the task-block BOLD response normally observed in the primary motor cortex with functional magnetic resonance imaging methods, but also shorter and longer BOLD-fluctuations than the task-block and which provided information about the long-term dynamic of this center. The binary cross recurrence plot showed short-lasting and long-lasting functional interactions between the primary motor cortex and the primary somatosensory cortex, anterior motor thalamus and precuneous nucleus, interactions which changed with the resting and motor tasks. Most of the interactions found in healthy controls were disrupted in Parkinson’s patients, and may be at the basis of some of the motor disorders and side-effects of dopaminergic drugs commonly observed in these patients.


Author(s):  
Petra Fischer

In humans, finely tuned gamma synchronization (60-90 Hz) rapidly appears at movement onset in a motor control network involving primary motor cortex, the basals ganglia and motor thalamus. Yet the functional consequences of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement interruption and stabilizing network dynamics for sustained contractions. Here I will introduce detailed hypotheses about how intra- and inter-site synchronization could interact with firing rate changes in different parts of the network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight on potential key mechanisms of cortico-basal ganglia-thalamo-cortical communication. Confirming or revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation, invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more tractable once we understand the neuronal mechanisms underlying behavioural readouts.


2021 ◽  
Author(s):  
Carmen B. Schäfer ◽  
Zhenyu Gao ◽  
Chris I. De Zeeuw ◽  
Freek E. Hoebeek

Sign in / Sign up

Export Citation Format

Share Document