scholarly journals Curious Objects: How Visual Complexity Guides Attention and Engagement

2021 ◽  
Vol 45 (4) ◽  
Author(s):  
Zekun Sun ◽  
Chaz Firestone
Keyword(s):  
Author(s):  
Richard Taylor ◽  
Branka Spehar ◽  
Colin Clifford ◽  
Ben Newell
Keyword(s):  

2001 ◽  
Author(s):  
Andrea Bubka ◽  
Frederick Bonato
Keyword(s):  

Author(s):  
Sung Ho Kim ◽  
Ji Hwan Lee ◽  
Donggun Park ◽  
Yushin Lee ◽  
Myung Hwan Yun

Clutter problem of modern cockpit displays can occur frequently due to a large amount of information. So, decluttering less important information is required to minimize search time to find target information and prevent human error in interpreting display information. This study is to compare human search performance by visual complexity levels and decluttering methods of cockpit displays. Visual complexity of cockpit displays was designed to be three levels (High, medium, and low) by combining four design variables (number of stimuli, number of colors, number of icons, and variance of divisions) affecting visual complexity. A threat scoring equation was developed to determine what information to be decluttered and four decluttering methods (removal, dimming, dotting, and small sizing) were used to figure out how to declutter the information effectively. Human search performance was measured through search time of visual search task in terms of speed and number of hits of signal detection task in terms of accuracy. The main effect of visual complexity levels and the interaction effect were not significant in both search time and number of hits. Meanwhile, the main effect of decluttering methods was significant in search time. Especially, dotting was the most effective decluttering method in terms of speed and accuracy of human perception performance. The results of this study can be applied to information processing of cockpit displays and then contribute to improve pilot situation awareness.


2015 ◽  
Vol 160 ◽  
pp. 43-57 ◽  
Author(s):  
Penousal Machado ◽  
Juan Romero ◽  
Marcos Nadal ◽  
Antonino Santos ◽  
João Correia ◽  
...  

2021 ◽  
Vol 33 (5) ◽  
pp. 902-918 ◽  
Author(s):  
Isabel E. Asp ◽  
Viola S. Störmer ◽  
Timothy F. Brady

Abstract Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that more meaningful stimuli recruit additional working memory resources, allowing them to be better remembered.


Sign in / Sign up

Export Citation Format

Share Document