scholarly journals Rolling covenants to protect coastal ecosystems in the face of sea‐level rise

Author(s):  
Justine Bell‐James ◽  
James A. Fitzsimons ◽  
Chris L. Gillies ◽  
Nicole Shumway ◽  
Catherine E. Lovelock
2017 ◽  
pp. 302-313
Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.


2017 ◽  
Vol 46 (2) ◽  
pp. 388-419 ◽  
Author(s):  
Sahan T. M. Dissanayake ◽  
Meagan K. Hennessey

We analyze the benefits of incorporating climate change into land conservation decisions using wetland migration under rising sea-levels as a case study. We use a simple and inexpensive decision method, a knapsack algorithm implemented in Excel, with (1) simulation data to show that ignoring sea-level rise predictions lead to suboptimal outcomes, and (2) an application to land conservation in Phippsburg, Maine to show the real-world applicability. The simulation shows an 11-percent to almost 30-percent gain in increased benefits when accounting for sea-level rise. The results highlight that it is possible to, and important to, incorporate sea-level rise into conservation planning.


2013 ◽  
pp. 163-184
Author(s):  
H.-P. Plag ◽  
S. Jules-Plag

2011 ◽  
Vol 60 ◽  
pp. 99-104
Author(s):  
Maurice Roos ◽  
Johannes J. De Vries
Keyword(s):  

2017 ◽  
Author(s):  
Giovanni De Falco ◽  
Emanuela Molinaroli ◽  
Alessandro Conforti ◽  
Simone Simeone ◽  
Renato Tonielli

Abstract. Coastal ecosystems store carbonate particles, which play a significant role in the carbonate dynamics of coastal areas and may contribute to the sediment budget of adjacent beaches. In the nearshore seabed of temperate zones, marine biogenic carbonates are mainly produced inside seagrass meadows. This study quantifies the contribution of biogenic sediments, mainly produced in Posidonia oceanica seagrass meadows and secondarily in photophilic algal communities, to the sediment budget of a Mediterranean beach-dune system (San Giovanni beach, western Sardinia, western Mediterranean Sea). A set of geophysical, petrographic and sedimentological data were used to estimate the sediment volume and composition of the beach-dune system as a whole. The San Giovanni beach-dune system contains ~ 2106 m3 of sediments, about 83 % of which are located in the coastal wedge, 16 % in the dune fields and 1 % in the beachface. The sediments are composed of mixed modern bioclastic and relict biogenic and siliciclastic grains from various sources. The system receives a large input of modern bioclastic grains, mainly composed of Rhodophytes, Molluscs and Bryozoans, which derive from sediment production by present-day carbonate factories, particularly P. oceanica seagrass meadows. Radiocarbon dating of modern bioclastic grains indicated that they were produced during the last 4.37 ka. This value was used to estimate the long-term deposition rates of modern bioclastic sediments in the various beach compartments. The total deposition rate of modern bioclastic grains is 46 000 ± 5000 tons century−1, mainly deposited in the coastal wedge (85 %) and dunes (15 %). This deposition rate is equivalent to ~ 26 000 m3 century−1, and 26 000 m3 represents ~ 1.2 % of the total beach-dune sediment volume. Carbonate production from coastal ecosystems was estimated to be 132 000 ÷ 307 000 tons century−1, 28 % (15 % ÷ 34 %) of which is transported to the beach. The contribution to the beach sediment budget represents a further ecosystem service provided by P. oceanica, and our data can help quantify the value of this specific service in addition to the others provided by this seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has several implications for the adaptation of mixed and carbonate beaches to the loss of seagrass meadows due to local impacts and the changes expected to occur over the next few decades in coastal ecosystems following sea level rise.


Sign in / Sign up

Export Citation Format

Share Document