A Framework for Understanding Adaptation by Manufacturing Industries

2017 ◽  
pp. 302-313
Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.

Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.


2021 ◽  
Vol 6 (2) ◽  
pp. 37-44
Author(s):  
Tran Ngoc-Long ◽  
◽  
Phan Van-Phuc ◽  
Valeriy Morozov ◽  
◽  
...  

Introduction: Climate change (temperature rise and sea level rise) has a considerable influence on the behavior of concrete structures over time. All concrete degradation processes are connected to climate variables and the effects of climate change. The RCP8.5 (Representative Concentration Pathway) scenario, which is part of the report on climate change and level rise scenarios for Vietnam, predicts that the beginning of the 21st century will see an average annual increase in temperature between 0.8 and 1.1°C. In the mid-21st century, the temperature will likely increase by 1.8–2.3°C, with the temperature in the north likely increasing by 2.0–2.3°C and in the south by 1.8–1.9°C. In marine environments, the degradation of concrete structures can occur rapidly due to chloride-induced reinforcement corrosion. Furthermore, sea level rise is going to reduce the distance from the coastline to the structures and lead to increased surface chloride concentration. Methods: The evaluation of chloride penetration was based on the ASTM C1202 test (ASTM, 2012). The cylinder specimens (d = 100 mm, h = 200 mm) used for a rapid chloride penetration test (RCPT) were immersed in water for 28 days in a water-curing tank. Results: This study proposes a predictive model for analyzing the impact of climate change on the service life of concrete structures on Vietnam’s North Central Coast. The corrosion initiation time decreases by 16.5% when the effects of both temperature rise and sea level rise are taken into consideration. When only temperature rise is taken into consideration, the rate of reduction is approximately 9.0%. These results reaffirm that climate change has a significant effect on the corrosion initiation time of concrete structures located in a marine environment.


2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


2019 ◽  
Vol 7 (10) ◽  
pp. 352 ◽  
Author(s):  
Lopes ◽  
Lopes ◽  
Dias

Climate change and global sea-level rise are major issues of the 21st century. The main goal of this study is to assess the physical and biogeochemical status of the Ria de Aveiro lagoon (Portugal) under future climate scenarios, using a coupled physical/ eutrophication model. The impact on the lagoon ecosystem status of the mean sea level rise (MSLR), the amplitude rise of the M2 tidal constituent (M2R), the changes in the river discharge, and the rising of the air temperature was investigated. Under MSLR and M2R, the results point to an overall salinity increase and water temperature decrease, revealing ocean water dominance. The main lagoon areas presented salinity values close to those of the ocean waters (~34 PSU), while a high range of salinity was presented for the river and the far end areas (20–34 PSU). The water temperature showed a decrease of approximately 0.5–1.5 °C. The responses of the biogeochemical variables reflect the increase of the oceanic inflow (transparent and nutrient-poor water) or the reduction of the river flows (nutrient-rich waters). The results evidenced, under the scenarios, an overall decreasing of the inorganic nitrogen concentration and the carbon phytoplankton concentrations. A warm climate, although increasing the water temperature, does not seem to affect the lagoon’s main status, at least in the frame of the model used in the study.


Author(s):  
Robert J. Nicholls ◽  
Natasha Marinova ◽  
Jason A. Lowe ◽  
Sally Brown ◽  
Pier Vellinga ◽  
...  

The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Weiwei Xie ◽  
Bo Tang ◽  
Qingmin Meng

Fast urbanization produces a large and growing population in coastal areas. However, the increasing rise in sea levels, one of the most impacts of global warming, makes coastal communities much more vulnerable to flooding than before. While most existing work focuses on understanding the large-scale impacts of sea-level rise, this paper investigates parcel-level property impacts, using a specific coastal city, Tampa, Florida, USA, as an empirical study. This research adopts a spatial-temporal analysis method to identify locations of flooded properties and their costs over a future period. A corrected sea-level rise model based on satellite altimeter data is first used to predict future global mean sea levels. Based on high-resolution LiDAR digital elevation data and property maps, properties to be flooded are identified to evaluate property damage cost. This empirical analysis provides deep understanding of potential flooding risks for individual properties with detailed spatial information, including residential, commercial, industrial, agriculture, and governmental buildings, at a fine spatial scale under three different levels of global warming. The flooded property maps not only help residents to choose location of their properties, but also enable local governments to prevent potential sea-level rising risks for better urban planning. Both spatial and temporal analyses can be easily applied by researchers or governments to other coastal cities for sea-level rise- and climate change-related urban planning and management.


2021 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Evgeniia A. Kostianaia ◽  
Andrey G. Kostianoy ◽  
Mikhail A. Scheglov ◽  
Aleksey I. Karelov ◽  
Alexander S. Vasileisky

Abstract This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.


2013 ◽  
Vol 27 (1) ◽  
pp. 81
Author(s):  
Ifan Ridlo Suhelm

Tidal inundation, flood and land subsidence are the problems faced by Semarang city related to climate change. Intergovernmental Panel on Climate Change (IPCC) predicted the increase of sea level rise 18-59 cm during 1990-2100 while the temperature increase 0,6°C to 4°C during the same period. The Semarang coastal city was highly vulnerable to sea level rise and it increased with two factors, topography and land subsidence. The purpose of this study was to map the adaptive capacity of coastal areas in the face of the threat of disasters caused by climate change. The parameters used are Network Number, Employee based educational background, Source Main Livelihoods, Health Facilities, and Infrastructure Road. Adaptive capacity of regions classified into 3 (three) classes, namely low, medium and high. The results of the study showed that most of the coastal area of Semarang have adaptive capacities ranging from low to moderate, while the village with low capacity totaling 58 villages (58.62%) of the total coastal district in the city of Semarang.


2019 ◽  
Vol 19 (3B) ◽  
pp. 227-237
Author(s):  
Pham Viet Hong ◽  
Tran Anh Tuan ◽  
Nguyen Thi Anh Nguyet

Today, environmental hazards and challenges are no longer confined to the national or regional scale but on the global scale. One of the biggest challenges for humanity is the natural disasters, global warming and sea level rise. The natural disasters causing serious consequences for human life, such as: Storms, floods, earthquakes, tsunamis, desertification, high tides... increase in frequency, intensity and scale. In recent years, Ca Mau province as well as coastal provinces of Vietnam is under great influence due to the impacts of climate change. One of the most affected districts in Ca Mau province is Ngoc Hien district. The district has a geographic location with three sides bordering the sea, one side bordering the river, a completely isolated terrain. The terrain is flat, strongly divided by the system of natural rivers and canals and intertwined canals, so it is constantly flooded by the sea. Ngoc Hien district is characterized by a sub-equatorial monsoon climate, directly affected by irregular semi-diurnal regime. The main purpose of the paper is to assess coastal vulnerability due to the impact of climate change over time with GIS-based remote sensing images. Remote sensing data with multi-time characteristics, collected in many periods and covering a wide area is an effective tool for monitoring shoreline fluctuations in particular and land use status of the study area in general.


Sign in / Sign up

Export Citation Format

Share Document