LESSONS LEARNED FROM TRANSGRESSIVE PALEOZOIC SANDSTONES AND MODERN MID-ATLANTIC BARRIER ISLANDS, CHINCOTEAGUE BAY REGION, VIRGINIA: IMPLICATIONS FOR LAND USE AND MANAGEMENT PLANNING IN THE FACE OF SEA-LEVEL RISE

2020 ◽  
Author(s):  
Sean R. Cornell ◽  
◽  
Adrienne Oakley ◽  
Christopher Bochicchio
2019 ◽  
Author(s):  
Soely Luyando-Flusa ◽  
◽  
Christopher J. Hein ◽  
Leslie Reeder-Myers ◽  
Torben Rick ◽  
...  

2013 ◽  
Vol 19 (5) ◽  
pp. 551-568 ◽  
Author(s):  
Brenda B. Lin ◽  
Yong Bing Khoo ◽  
Matthew Inman ◽  
Chi-Hsiang Wang ◽  
Sorada Tapsuwan ◽  
...  

Waterbirds ◽  
2015 ◽  
Vol 38 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Shawn R. Craik ◽  
Alan R. Hanson ◽  
Rodger D. Titman ◽  
Matthew L. Mahoney ◽  
Éric Tremblay

2021 ◽  
Author(s):  
Frances E. Dunn ◽  
Philip S. J. Minderhoud

<p>As one of the largest deltas in the world, the Mekong delta is home to over 17 million people and supports internationally important agriculture. Recently deposited sediment compacts and causes subsidence in deltas, so they require regular sediment input to maintain elevation relative to sea level. These processes are complicated by human activities, which prevent sediment deposition indirectly through reducing fluvial sediment supply and directly through the construction of flood defence infrastructure on deltas, impeding floods which deliver sediment to the land. Additionally, anthropogenic activities increase the rate of subsidence through the extraction of groundwater and other land-use practices.</p><p>This research shows the potential for fluvial sediment delivery to compensate for sea-level rise and subsidence in the Mekong delta over the 21st century. We use detailed elevation data and subsidence scenarios in combination with regional sea-level rise and fluvial sediment flux projections to quantify the potential for maintaining elevation relative to sea level in the Mekong delta. We present four examples of localised sedimentation scenarios in specific areas, for which we quantified the potential effectiveness of fluvial sediment deposition for offsetting relative sea-level rise. The presented sediment-based adaptation strategies are complicated by existing land use, therefore a change in water and sediment management is required to effectively use natural resources and employ these adaptation methods. The presented approach could be an exemplar to assess sedimentation strategy feasibility in other delta systems worldwide that are under threat from sea-level rise.</p>


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80658 ◽  
Author(s):  
Joshua Steven Reece ◽  
Reed F. Noss ◽  
Jon Oetting ◽  
Tom Hoctor ◽  
Michael Volk

2017 ◽  
pp. 302-313
Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.


2017 ◽  
Vol 46 (2) ◽  
pp. 388-419 ◽  
Author(s):  
Sahan T. M. Dissanayake ◽  
Meagan K. Hennessey

We analyze the benefits of incorporating climate change into land conservation decisions using wetland migration under rising sea-levels as a case study. We use a simple and inexpensive decision method, a knapsack algorithm implemented in Excel, with (1) simulation data to show that ignoring sea-level rise predictions lead to suboptimal outcomes, and (2) an application to land conservation in Phippsburg, Maine to show the real-world applicability. The simulation shows an 11-percent to almost 30-percent gain in increased benefits when accounting for sea-level rise. The results highlight that it is possible to, and important to, incorporate sea-level rise into conservation planning.


2019 ◽  
Vol 12 (9) ◽  
pp. 4013-4030 ◽  
Author(s):  
Jaap H. Nienhuis ◽  
Jorge Lorenzo-Trueba

Abstract. Barrier islands are low-lying coastal landforms vulnerable to inundation and erosion by sea level rise. Despite their socioeconomic and ecological importance, their future morphodynamic response to sea level rise or other hazards is poorly understood. To tackle this knowledge gap, we outline and describe the BarrieR Inlet Environment (BRIE) model that can simulate long-term barrier morphodynamics. In addition to existing overwash and shoreface formulations, BRIE accounts for alongshore sediment transport, inlet dynamics, and flood–tidal delta deposition along barrier islands. Inlets within BRIE can open, close, migrate, merge with other inlets, and build flood–tidal delta deposits. Long-term simulations reveal complex emergent behavior of tidal inlets resulting from interactions with sea level rise and overwash. BRIE also includes a stratigraphic module, which demonstrates that barrier dynamics under constant sea level rise rates can result in stratigraphic profiles composed of inlet fill, flood–tidal delta, and overwash deposits. In general, the BRIE model represents a process-based exploratory view of barrier island morphodynamics that can be used to investigate long-term risks of flooding and erosion in barrier environments. For example, BRIE can simulate barrier island drowning in cases in which the imposed sea level rise rate is faster than the morphodynamic response of the barrier island.


Sign in / Sign up

Export Citation Format

Share Document