Compass Orientation During Dispersal of Freshwater Hatchling Snapping Turtles (Chelydra serpentina) and Blanding's Turtles (Emydoidea blandingii)

Ethology ◽  
2015 ◽  
Vol 121 (6) ◽  
pp. 538-547 ◽  
Author(s):  
Justin D. Congdon ◽  
Michael J. Pappas ◽  
John D. Krenz ◽  
Bruce J. Brecke ◽  
Meredith Schlenner
2010 ◽  
Vol 124 (2) ◽  
pp. 134 ◽  
Author(s):  
Richard P. Thiel ◽  
Timothy T. Wilder

Hibernation of adult-sized Blanding's Turtles was studied at two west-central Wisconsin sites between 1991 and 2008. Turtles arrived at hibernacula from mid September to early October, spending 126 to 216 days at these sites, and generally emerged in early April yearly. Sixty percent of females and 30 percent of males hibernated in natural over man-made structures as hibernation sites. Anoxic conditions near five hibernation sites ranged from 78 to 100 days. Shell temperatures of three turtles monitored over five winters remained at <1°C a mean of 2,274 hours each winter. Over the same period, four turtles' temperatures were between 0° and -1°C a mean of 302 hours. During the course of our study, hibernating west-central Wisconsin Blanding's Turtles demonstrated a remarkable degree of both cold and anoxia-tolerance similar to that observed among Painted Turtles (Chrysemys picta) and Snapping Turtles (Chelydra serpentina).


2001 ◽  
Vol 35 (3) ◽  
pp. 514 ◽  
Author(s):  
Paul A. Sims ◽  
Gary C. Packard ◽  
Philip L. Chapman

Ecotoxicology ◽  
2011 ◽  
Vol 20 (7) ◽  
pp. 1599-1608 ◽  
Author(s):  
Madeline A. Turnquist ◽  
Charles T. Driscoll ◽  
Kimberly L. Schulz ◽  
Martin A. Schlaepfer

1991 ◽  
Vol 69 (5) ◽  
pp. 1314-1320 ◽  
Author(s):  
Ronald J. Brooks ◽  
Gregory P. Brown ◽  
David A. Galbraith

A northern population of snapping turtles (Chelydra serpentina) centred around Lake Sasajewun in the Wildlife Research Area in Algonquin Park, Ontario, has been studied and individually marked since 1972. From 1972 to 1985, annual mortality and survivorship of adult females had been estimated at 1 and 96.6%, respectively, and only six dead turtles were found. Lake Sasajewun's population of C. serpentina was estimated in 1978–1979 and 1984–1985 at 38 and 47 adults, respectively. From 1976 to 1987, total number of nests found in the study area remained fairly constant and there were no significant changes in mean clutch size, mean clutch mass, or mean egg mass. On the main nest site, recruitment from 1976 to 1987 was 1.15 (1.8%) new females per year. From 1987 to 1989, we found 34 dead adult snapping turtles in the Wildlife Research Area. Observations of freshly dead animals indicated that most were killed by otters (Lutra canadensis) during the turtles' winter hibernation. A few uninjured turtles also died of septicemia in early spring shortly after emerging from hibernation. The estimated number of adults in Lake Sasajewun was 31 in 1988–1989, and the minimum number of adult residents known to be alive in the lake dropped from 47 in 1986 to 16 in 1989. In 1986 and 1987, annual adult female survivorship was estimated at 80 and 55%, respectively, and estimated numbers of nesting females declined from 82 in 1986 to 71 and 55 in 1987 and 1988, respectively. The actual number of nests found declined by 38 and 20% over the same periods. Although no significant differences occurred in mean egg mass or mean clutch size between 1987 and 1989 and earlier years, the mean clutch mass in 1988 was larger than in 1977 or 1978. This difference appeared to be due to a gradual increase in the mean age and body size of breeding females rather than to density-dependent changes. Recruitment into the adult breeding female population in 1987–1989 remained less than two individuals per year. Hatchling survival and number of juveniles were low throughout the study. Our observations support the view that populations of species with high, stochastic juvenile mortality and long adult life spans may be decimated quickly by increased mortality of adult animals, particularly if numbers of juveniles and immigrants are low. Recovery of such populations should be very slow because of a lack of effective density-dependent response in reproduction and recruitment.


2019 ◽  
Vol 132 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Sue Carstairs ◽  
Marc Dupuis-Desormeaux ◽  
Christina M. Davy

Road mortality poses a major threat to turtle populations. Several studies have suggested that the terrestrial movements associated with nesting increase this risk for females. The Ontario Turtle Conservation Centre (OTCC) is home to the Kawartha Turtle Trauma Centre, which admits 900 or more turtles a year, with road injuries the primary cause of admission. We tested the hypothesis that road mortality in turtles is female-biased using data from injured Midland Painted Turtles (Chrysemys picta marginata), Snapping Turtles (Chelydra serpentina), Blanding’s Turtles (Emydoidea blandingii), and Northern Map Turtles (Graptemys geographica) collected over about 126 000 km2 and admitted to OTCC’s hospital from January 2013 to October 2017. There was no difference in the number of male and female admissions of Midland Painted, Blanding’s, or Snapping Turtles (P > 0.05); however, more female Northern Map Turtles than males were admitted (P < 0.001). Admission of female turtles peaked in June during the nesting season, but male admissions were more evenly distributed throughout the season. Our admissions data provide a temporally unbiased and geographically broad snapshot of turtle–vehicle interactions that can directly inform conservation and management policies. Although our data are not equivalent to mortality rates, these results demonstrate that vehicle strikes can have a substantial impact on both female and male turtles.


Oecologia ◽  
1999 ◽  
Vol 121 (2) ◽  
pp. 224-235 ◽  
Author(s):  
Justin D. Congdon ◽  
Roy D. Nagle ◽  
Chirstopher W. Beck ◽  
Owen M. Kinney ◽  
S. Rebecca Yeomans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document