Design and preparation of the class B G protein‐coupled receptors GLP‐1R and GCGR for 19 F‐NMR studies in solution

FEBS Journal ◽  
2020 ◽  
Author(s):  
Huixia Wang ◽  
Wanhui Hu ◽  
Dongsheng Liu ◽  
Kurt Wüthrich
FEBS Letters ◽  
2019 ◽  
Vol 593 (10) ◽  
pp. 1113-1121 ◽  
Author(s):  
Wanhui Hu ◽  
Huixia Wang ◽  
Yaguang Hou ◽  
Yimei Hao ◽  
Dongsheng Liu

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
M. H. Baig ◽  
K. Ahmad ◽  
Q. Hasan ◽  
M. K. A. Khan ◽  
N. S. Rao ◽  
...  

Glucagon receptor (GCGR) is a secretin-like (class B) family of G-protein coupled receptors (GPCRs) in humans that plays an important role in elevating the glucose concentration in blood and has thus become one of the promising therapeutic targets for treatment of type 2 diabetes mellitus. GCGR based inhibitors for the treatment of type 2 diabetes are either glucagon neutralizers or small molecular antagonists. Management of diabetes without any side effects is still a challenge to the medical system, and the search for a new and effective natural GCGR antagonist is an important area for the treatment of type 2 diabetes. In the present study, a number of natural compounds containing antidiabetic properties were selected from the literature and their binding potential against GCGR was determined using molecular docking and otherin silicoapproaches. Among all selected natural compounds, curcumin was found to be the most effective compound against GCGR followed by amorfrutin 1 and 4-hydroxyderricin. These compounds were rescored to confirm the accuracy of binding using another scoring function (x-score). The final conclusions were drawn based on the results obtained from the GOLD andx-score. Further experiments were conducted to identify the atomic level interactions of selected compounds with GCGR.


2020 ◽  
Vol 60 (1) ◽  
pp. 89-107 ◽  
Author(s):  
Denise Wootten ◽  
Laurence J. Miller

Recent advances in our understanding of the structure and function of class B G protein–coupled receptors (GPCRs) provide multiple opportunities for targeted development of allosteric modulators. Given the pleiotropic signaling patterns emanating from these receptors in response to a variety of natural agonist ligands, modulators have the potential to sculpt the responses to meet distinct needs of different groups of patients. In this review, we provide insights into how this family of GPCRs differs from the rest of the superfamily, how orthosteric agonists bind and activate these receptors, the potential for allosteric modulators to interact with various regions of these targets, and the allosteric influence of endogenous proteins on the pharmacology of these receptors, all of which are important considerations when developing new therapies.


Sign in / Sign up

Export Citation Format

Share Document