A comparative study in descriptions of coupled kinematic hardening rules and ratcheting assessment over asymmetric stress cycles

2016 ◽  
Vol 40 (6) ◽  
pp. 882-893 ◽  
Author(s):  
A Varvani-Farahani



2015 ◽  
Vol 137 (3) ◽  
Author(s):  
G. R. Ahmadzadeh ◽  
S. M. Hamidinejad ◽  
A. Varvani-Farahani

The present study predicts ratcheting response of 1070 and 16MnR steel samples using nonlinear kinematic hardening rules of Ohno–Wang (O–W) and Ahmadzadeh–Varvani (A–V) under uniaxial stress cycles. The ratcheting values predicted based on the O–W model were noticeably influenced by the magnitude of exponents and the number of backstress components. Taking into account both material and cyclic stress level dependent coefficients, the A–V hardening rule offered a simple framework to predict ratcheting strain over loading cycles. A comparative study of these hardening rules to assess ratcheting of 1070 and 16MnR steel samples undergoing uniaxial loading conditions resulted in a close agreement of the A–V and O–W models. The choice of hardening rules in the assessment of materials ratcheting was further discussed based on the complexity of the hardening rule, number of constants/coefficients required to characterize ratcheting response, and central processing unit (CPU) time required to run the models.



Author(s):  
Paschalis Grammenoudis ◽  
Charalampos Tsakmakis

Kinematic hardening rules are employed in classical plasticity to capture the so–called Bauschinger effect. They are important when describing the material response during reloading. In the framework of thermodynamically consistent gradient plasticity theories, kinematic hardening effects were first incorporated into a micropolar plasticity model by Grammenoudis and Tsakmakis. The aim of the present paper is to investigate this model by predicting size effects in torsional loading of circular cylinders. It is shown that kinematic hardening rules compared with isotropic hardening rules, as adopted in the paper, provide more possibilities for modelling size effects in the material response, even if only monotonous loading conditions are considered.





2020 ◽  
Vol 29 (9) ◽  
pp. 1379-1396
Author(s):  
Jun Tian ◽  
Xiaolong Fu ◽  
Xuejiao Shao ◽  
Lu Jiang ◽  
Jian Li ◽  
...  

A series of experiments subjected to uniaxial and non-proportionally multiaxial cyclic loadings were performed to investigate the ratcheting responses of SA508 Gr.3 steel at room and elevated temperatures. The influences of different stress levels and nonproportional loading paths on the damage-coupled ratcheting responses were discussed. From experimental results, cyclic softening characteristic and dynamic strain aging can be observed under cyclic loadings. Moreover, the steel exhibits an obvious nonproportional path-dependence of the damage evolution under multiaxial loading paths. To numerically simulate the ratcheting responses under uniaxial and multiaxial loadings with the extended cyclic plastic model, the damage-coupled variable was introduced into the classic isotropic and nonlinear kinematic hardening rules. Corresponding material parameters could be calibrated from experimental data, and comparisons between experimental and simulated results were performed to validate the proposed model.



1978 ◽  
Vol 100 (1) ◽  
pp. 104-111 ◽  
Author(s):  
H. S. Lamba ◽  
O. M. Sidebottom

Experiments that demonstrate the basic quantitative and qualitative aspects of the cyclic plasticity of metals are presented in Part 1. Three incremental plasticity kinematic hardening models of prominence are based on the Prager, Ziegler, and Mroz hardening rules, of which the former two have been more frequently used than the latter. For a specimen previously fully stabilized by out of phase cyclic loading the results of a subsequent cyclic nonproportional strain path experiment are compared to the predictions of the above models. A formulation employing a Tresca yield surface translating inside a Tresca limit surface according to the Mroz hardening rule gives excellent predictions and also demonstrates the erasure of memory material property.



2009 ◽  
Vol 25 (8) ◽  
pp. 1560-1587 ◽  
Author(s):  
Mohammad Abdel-Karim


2007 ◽  
Vol 44 (14-15) ◽  
pp. 5027-5042 ◽  
Author(s):  
Francisco J. Montáns ◽  
Miguel A. Caminero


1997 ◽  
Vol 119 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Xian Jie Yang

This paper is concerned with the constitutive modeling of the temperature history dependent behavior of metallic materials under uniaxial and nonproportional cyclic loadings. In the study, a class of kinematic hardening rules characterized by a decomposition of the total kinematic hardening variable is discussed. A new nonproportionality is defined. In order to consider the influence of complex cyclic loading and temperature histories on materials behavior, an apparent isotropic deformation resistance parameter Qasm is proposed and the evolution equations of the isotropic deformation resistance Q are offered to correlate the memory effect of previous loading history on material behavior. The proposed model is applied to the description of complex cyclic deformation behavior of 1Cr18Ni9Ti stainless steel, and this model gives good results for the prediction of complex tests under complex loading history and at stepwise temperature changes.



Sign in / Sign up

Export Citation Format

Share Document