Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes

Geobiology ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 123-138 ◽  
Author(s):  
W.-H. He ◽  
G. R. Shi ◽  
R. J. Twitchett ◽  
Y. Zhang ◽  
K.-X. Zhang ◽  
...  
Paleobiology ◽  
2015 ◽  
Vol 42 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Ellen K. Schaal ◽  
Matthew E. Clapham ◽  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Jonathan L. Payne

AbstractThe small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian (Changhsingian) to the earliest Triassic (Induan), and then increased during Olenekian (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon much larger than its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, size decrease occurred across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.


2013 ◽  
Vol 105 ◽  
pp. 121-134 ◽  
Author(s):  
Jun Shen ◽  
Thomas J. Algeo ◽  
Qing Hu ◽  
Guozhen Xu ◽  
Lian Zhou ◽  
...  

2021 ◽  
Vol 207 ◽  
pp. 103649
Author(s):  
Skye Yunshu Tian ◽  
Moriaki Yasuhara ◽  
Huai-Hsuan M. Huang ◽  
Fabien L. Condamine ◽  
Marci M. Robinson

2012 ◽  
Vol 367 (1605) ◽  
pp. 2962-2970 ◽  
Author(s):  
Malte Jochum ◽  
Florian D. Schneider ◽  
Tasman P. Crowe ◽  
Ulrich Brose ◽  
Eoin J. O'Gorman

Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in bottom-up forcing. These processes are typically studied in isolation and little is known about their potential interactive effects. Here, we present the results of an in situ experiment examining the combined effects of top-down and bottom-up forces on the structure of a coastal marine community. Reduced average body mass of the top predator (the shore crab, Carcinus maenas ) and nutrient enrichment combined additively to alter mean community body mass. Nutrient enrichment increased species richness and overall density of organisms. Reduced top-predator body mass increased community biomass. Additionally, we found evidence for an allometrically induced trophic cascade. Here, the reduction in top-predator body mass enabled greater biomass of intermediate fish predators within the mesocosms. This, in turn, suppressed key micrograzers, which led to an overall increase in microalgal biomass. This response highlights the possibility for climate-induced trophic cascades, driven by altered size structure of populations, rather than species extinction.


Geobiology ◽  
2010 ◽  
Vol 8 (5) ◽  
pp. 391-402 ◽  
Author(s):  
W.-H. HE ◽  
R. J. TWITCHETT ◽  
Y. ZHANG ◽  
G. R. SHI ◽  
Q.-L. FENG ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 99-113 ◽  
Author(s):  
Philipp Brun ◽  
Mark R. Payne ◽  
Thomas Kiørboe

Abstract. The trait-based approach is gaining increasing popularity in marine plankton ecology but the field urgently needs more and easier accessible trait data to advance. We compiled trait information on marine pelagic copepods, a major group of zooplankton, from the published literature and from experts and organized the data into a structured database. We collected 9306 records for 14 functional traits. Particular attention was given to body size, feeding mode, egg size, spawning strategy, respiration rate, and myelination (presence of nerve sheathing). Most records were reported at the species level, but some phylogenetically conserved traits, such as myelination, were reported at higher taxonomic levels, allowing the entire diversity of around 10 800 recognized marine copepod species to be covered with a few records. Aside from myelination, data coverage was highest for spawning strategy and body size, while information was more limited for quantitative traits related to reproduction and physiology. The database may be used to investigate relationships between traits, to produce trait biogeographies, or to inform and validate trait-based marine ecosystem models. The data can be downloaded from PANGAEA, doi:10.1594/PANGAEA.862968.


Author(s):  
Ken H. Andersen

This chapter follows the size-structure of the entire marine ecosystem. It shows how the Sheldon spectrum emerges from predator–prey interactions and the limitations that physics and physiology place on individual organisms. How predator–prey interactions and physiological limitations scale with body size are the central assumptions in size spectrum theory. To that end, this chapter first defines body size and size spectrum. Next, it shows how central aspects of individual physiology scale with size: metabolism, clearance rate, and prey size preference. On that basis, it is possible to derive a power-law representation of the size spectrum by considering a balance between the needs of an organism (its metabolism) and the encountered prey, which is determined by the spectrum, the clearance rate, and the size preference. Lastly, the chapter uses the solution of the size spectrum to derive the expected size scaling of predation mortality.


Sign in / Sign up

Export Citation Format

Share Document