marine copepod
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 23)

H-INDEX

45
(FIVE YEARS 0)

Author(s):  
Andrew Barrick ◽  
Olivier Champeau ◽  
Juliette Butler ◽  
Tanja Wiles ◽  
Mike Boundy ◽  
...  


2021 ◽  
Vol 173 ◽  
pp. 113145
Author(s):  
Hui Wei ◽  
Zhuoan Bai ◽  
Dongmei Xie ◽  
Yao Chen ◽  
Minghua Wang




PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259371
Author(s):  
Matthew J. Powers ◽  
Lucas D. Martz ◽  
Ronald S. Burton ◽  
Geoffrey E. Hill ◽  
Ryan J. Weaver

The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.



2021 ◽  
Author(s):  
Reid S Brennan ◽  
James A deMayo ◽  
Hans G Dam ◽  
Michael Finiguerra ◽  
Hannes Baumann ◽  
...  

Metazoan adaptation to global change will rely on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is therefore essential to make accurate predictions for persistence in future conditions. Here, we identify the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) conditions over 25 generations. Replicate populations showed a strong and consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the genomic changes into selection, drift, and lab adaptation and found that the majority of allele frequency change in warming (56%) and OWA (63%) was driven by selection but acidification was dominated by drift (66%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%. Accounting for lab adaptation was essential for not inflating a shared response to selection between all treatments. Finally, the mechanisms of adaptation in the multiple-stressor OWA conditions were not an additive product of warming and acidification, but rather a synergistic response where 47% of the allelic responses to selection were unique. These results are among the first to disentangle how the genomic targets of selection differ between single and multiple stressors and to demonstrate the complexity that non-additive multiple stressors will contribute to attempts to predict adaptive responses to complex environments.



2021 ◽  
pp. 28-37
Author(s):  
Carlos Varela ◽  
W. Wayne Price ◽  
Michael L. Middlebrooks ◽  
Louis J. Ambrosio

The genus Critomolgus Humes and Stock, 1983 represents a group of 34 species of copepods associated with marine invertebrates. Most of these species have been collected in associations with species of the phyla Cnidaria and Echinodermata in several localities in the Indian, Pacific and Atlantic Oceans with three species reported in the Mediterranean Sea. This is the first occasion in which a species belonging to the genus Critomolgus and the family Rhynchomolgidae Humes and Stock, 1972 is recorded for the Gulf of Mexico. Here, we describe a new species of marine copepod, Critomolgus walteri Varela, Price, Middlebrooks et Ambrosio, associated with the octocorals Leptogorgia virgulata (Lamarck, 1815) and L. hebes Verrill, 1869 in 3.3 meters of water in Tampa Bay, Florida. This species possesses characters that unite it with other members of the genus; however, it differs from all other species due to the body length and unique leg 5 and maxilla l characters. This new species provides evidence that much diversity remains to be discovered in the waters of the Gulf of Mexico and future sampling efforts should target this region.



Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 657
Author(s):  
Kevin Sugier ◽  
Romuald Laso-Jadart ◽  
Benoît Vacherie ◽  
Jos Käfer ◽  
Laurie Bertrand ◽  
...  

Copepods are among the most numerous animals, and they play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods. The Oithona male paradox describes the activity states of males, which are obliged to alternate between immobile and mobile phases for ambush feeding and mate searching, respectively, while the female is less mobile and feeds less. To characterize the molecular basis of this sexual dimorphism, we combined immunofluorescence, genomics, transcriptomics, and protein–protein interaction approaches and revealed the presence of a male-specific nervous ganglion. Transcriptomic analysis showed male-specific enrichment for nervous system development-related transcripts. Twenty-seven Lin12-Notch Repeat domain-containing protein coding genes (LDPGs) of the 75 LDPGs identified in the genome were specifically expressed in males. Furthermore, some LDPGs coded for proteins with predicted proteolytic activity, and proteases-associated transcripts showed a male-specific enrichment. Using yeast double–hybrid assays, we constructed a protein–protein interaction network involving two LDPs with proteases, extracellular matrix proteins, and neurogenesis-related proteins. We also hypothesized possible roles of the LDPGs in the development of the lateral ganglia through helping in extracellular matrix lysis, neurites growth guidance, and synapses genesis.



2021 ◽  
Vol 17 (7) ◽  
pp. 20210071
Author(s):  
James A. deMayo ◽  
Amanda Girod ◽  
Matthew C. Sasaki ◽  
Hans G. Dam

The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO 2 ) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO 2 ). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.





Sign in / Sign up

Export Citation Format

Share Document