scholarly journals Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

2014 ◽  
Vol 20 (11) ◽  
pp. 3568-3577 ◽  
Author(s):  
Jorge Durán ◽  
Jennifer L. Morse ◽  
Peter M. Groffman ◽  
John L. Campbell ◽  
Lynn M. Christenson ◽  
...  
2015 ◽  
Vol 87 ◽  
pp. 51-58 ◽  
Author(s):  
Peter M. Groffman ◽  
Timothy J. Fahey ◽  
Melany C. Fisk ◽  
Joseph B. Yavitt ◽  
Ruth E. Sherman ◽  
...  

2016 ◽  
Author(s):  
Marshall D. McDaniel ◽  
A. Stuart Grandy

Abstract. Agriculture-driven declines in plant biodiversity reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity (by rotating crops) can partially reverse these trends and enhance microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W.K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a three-year rotation cycle, but all soils were sampled under corn to isolate historical rotation effects from current crop effects. Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28–112 % and N by 18–58 % compared to monoculture corn. Rotations increased potential C mineralization by as much as 64 %, and potential N mineralization by 62 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the microbial community, assessed with community-level physiological profiling, showed that microbial communities in monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems, relatively small increases in plant biodiversity have a large impact on microbial community size and function.


2020 ◽  
Author(s):  
Maria Udovenko ◽  
Vusal Guliyev ◽  
Evgenia Blagodatskaya

<p>Soil microbiota ensuring sustainable functioning of terrestrial ecosystems is strongly dependent on climatic conditions and vegetation type. Even within the same climatic zone, active land use alters the size, structure and functioning of the microbial community. We hypothesized that land use effect on soil microbial biomass will be more pronounced under impact of global warming. We also tested whether the biomass of specific microbial group (e.g., fungi) is more sensitive to environmental changes than total microbial biomass.</p><p>We proved these hypotheses in the experiments based on Global Change Experimental Facility platform, located at the field research station of the Helmholtz-Centre for Environmental Research in Bad Lauchstädt near Halle, Saxon-Anhalt, Germany. Experimental setup included 50 plots, located in 10 blocks (5 plots per block). Five blocks are under ambient climate and the rest 5 blocks are subjected to a realistic climate change treatment (under conditions predicted by several models of climate change in Central Germany for 2050–2080 period). Five land use types were established in every block: conventional farming; organic farming; intensively used meadow, extensively used meadow and extensively used pasture. We determined soil microbial biomass and its fungal component by chloroform fumigation-extraction method and by ergosterol content, respectively. We found that fungal biomass was more sensitive to intensive land use for crop production than to climate change. The possible mechanisms of such a sensitivity will be discussed.</p>


2019 ◽  
Vol 146 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yang Yang ◽  
Linghui Meng ◽  
Ruth D. Yanai ◽  
Mario Montesdeoca ◽  
Pamela H. Templer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document