Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries

2021 ◽  
Author(s):  
Andrew S. MacDougall ◽  
Paul Caplat ◽  
Johan Olofsson ◽  
Matthias B. Siewert ◽  
Colin Bonner ◽  
...  
Keyword(s):  
Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 137
Author(s):  
Rosina Magaña Ugarte ◽  
María Pilar Gómez-Serranillos ◽  
Adrián Escudero ◽  
Rosario G. Gavilán

Albeit the remarkably high Ultraviolet B loads, high temperatures, and drought stress substantiate the need for efficient photoprotective strategies in Mediterranean high-mountain plants, these remain understudied. Considering the sensitivity of photosystems to extreme conditions, we evaluated an environmental gradient’s weight on the photoprotection of five high-mountain specialists from Central Spain. Diurnal and seasonal variations in chlorophyll, chlorophyll fluorescence, carotenoids, and xanthophylls in consecutive and climatically contrasting years were taken to evaluate the effect of the impending climate coarsening at the photosystem level. Our results revealed significant differences among species in the xanthophyll cycle functioning, acting either as a continuous photoprotective strategy enhancing photochemistry-steadiness; or prompted only to counteract the cumulative effects of atypically adverse conditions. The lutein cycle’s involvement is inferred from the high lutein content found in all species and elevations, acting as a sustained photoprotective strategy. These findings added to high de-epoxidation state (DEPS) and minor seasonal changes in the chlorophyll a/b ratio, infer the xanthophyll and Lutein cycles are crucial for upkeeping the photosystems’ optimal functioning in these plants heightening their photoprotective capacity during periods of more unfavorable conditions. Nevertheless, an atypically dry growing season’s detrimental effect infers the feasible surpassing of stress-thresholds and the precariousness of the communities’ functional diversity under climate change.


2021 ◽  
Vol 22 (7) ◽  
pp. 3477
Author(s):  
Julia Zaborowska ◽  
Bartosz Łabiszak ◽  
Annika Perry ◽  
Stephen Cavers ◽  
Witold Wachowiak

Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism.


2008 ◽  
Vol 14 (5) ◽  
pp. 1089-1103 ◽  
Author(s):  
MANDAR R. TRIVEDI ◽  
PAMELA M. BERRY ◽  
MICHAEL D. MORECROFT ◽  
TERENCE P. DAWSON

Author(s):  
Juan C. Mejía‐Giraldo ◽  
Cecilia Gallardo ◽  
Miguel A. Puertas‐Mejía

2005 ◽  
Vol 14 (11) ◽  
pp. 3547-3555 ◽  
Author(s):  
P. SCHONSWETTER ◽  
I. STEHLIK ◽  
R. HOLDEREGGER ◽  
A. TRIBSCH

Sign in / Sign up

Export Citation Format

Share Document