Research on strain distribution and damage behavior of thermal barrier coatings based on digital image correlation

2020 ◽  
Vol 17 (5) ◽  
pp. 2156-2161
Author(s):  
Li Wang ◽  
Haidou Wang ◽  
Yuelan Di ◽  
Yuncai Zhao ◽  
Le Wang
2018 ◽  
Vol 910 ◽  
pp. 161-166 ◽  
Author(s):  
Tei Saburi ◽  
Toshiaki Takahashi ◽  
Shiro Kubota ◽  
Yuji Ogata

The dynamic strain distribution behavior of a mortar block blasting was experimentally investigated. A small-scale blasting experiment using a mortar block with well-defined property was conducted and the dynamic strain distribution on the mortal block surface was analyzed using a Digital Image Correlation (DIC) method to establish the effective method for investigating the relationship between blast design and fracture mechanism. The block was blasted by simultaneous detonation of Composition C4 explosive charges with an electric detonator in two boreholes. The behavior of the block surface was observed by two high-speed cameras for three-dimensional DIC analysis and it was also measured by a strain-gauge for comparison. The three-dimensional displacements of the free surface of the block were obtained and dynamic strain distributions were computed. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile by the strain gauge.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hong He ◽  
Rong Zhou ◽  
Yuanwen Zou ◽  
Xuejin Huang ◽  
Jinchuan Li

Cell mechanical stretching in vitro is a fundamental technique commonly used in cardiovascular mechanobiology research. Accordingly, it is crucial to measure the accurate strain field of cell substrate under different strains. Digital image correlation (DIC) is a widely used measurement technique, which is able to obtain the accurate displacement and strain distribution. However, the traditional DIC algorithm used in digital image correlation engine (DICe) cannot obtain accurate result when utilized in large strain measurement. In this paper, an improved method aiming to acquire accurate strain distribution of substrate in large deformation was proposed, to evaluate the effect and accuracy, based on numerical experiments. The results showed that this method was effective and highly accurate. Then, we carried out uniaxial substrate stretching experiments and applied our method to measure strain distribution of the substrate. The proposed method could obtain accurate strain distribution of substrate film during large stretching, which would allow researchers to adequately describe the response of cells to different strains of substrate.


Sign in / Sign up

Export Citation Format

Share Document