Rab6b localizes to the Golgi complex in murine macrophages and promotes TNF release in response to mycobacterial infection

Author(s):  
Leslie C Domínguez Cadena ◽  
Thomas E Schultz ◽  
Alina Zamoshnikova ◽  
Meg L Donovan ◽  
Carmen D Mathmann ◽  
...  
2001 ◽  
Vol 69 (9) ◽  
pp. 5823-5831 ◽  
Author(s):  
Marcy Peteroy-Kelly ◽  
Vishwanath Venketaraman ◽  
Nancy D. Connell

ABSTRACT The generation of nitric oxide (NO) by activated macrophages is believed to control mycobacterial infection in the murine system. In this study we examined the effect ofMycobacterium bovis BCG infection on thel-arginine-dependent NO pathway in J774.1 murine macrophages. We have confirmed previous results by demonstrating that stimulation of J774.1 with lipopolysaccharide (LPS) and gamma interferon (IFN-γ) results in an increase in the uptake of3H-labeled l-arginine and a concomitant increase in the production of NO. We have also shown that BCG can mimic LPS treatment, leading to enhancedl-[3H]arginine uptake by IFN-γ-stimulated macrophages. Lipoarabinomannan, a component of the BCG cell wall that is structurally similar to LPS, is not responsible for the uptake stimulation in IFN-γ stimulated macrophages. Although we demonstrated that there was a 2.5-fold increase in NO production by macrophages 4 h after LPS–IFN-γ stimulation, BCG infection (with or without IFN-γ stimulation) did not lead to the production of NO by the macrophages by 4 h postinfection. At 24 h postinfection, the infected macrophages that were stimulated with IFN-γ produced amounts of NO similar to those of macrophages stimulated with LPS–IFN-γ. This suggests that there are multiple regulatory pathways involved in the production of NO. Finally, our data suggest that increased expression of the arginine permease, MCAT2B, after 4 h of LPS–IFN-γ treatment or BCG infection–IFN-γ treatment is not sufficient to account for the increases in l-[3H]arginine uptake detected. This suggests that the activity of the l-arginine transporter(s) is also altered in response to macrophage activation.


2016 ◽  
Vol 38 (3) ◽  
pp. 823-833 ◽  
Author(s):  
Zhang Bao ◽  
Ran Chen ◽  
Pei Zhang ◽  
Shan Lu ◽  
Xing Chen ◽  
...  

Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


Author(s):  
Valerie V. Ernst

During the earliest stage of oocyte development in the limpet, Acmea scutum, Golgi complexes are small, few and randomly dispersed in the cytoplasm. As growth proceeds, the Golgi complexes increase in size and number and migrate to the periphery of the cell. At this time, fibrous structures resembling striated rootlets occur associated with the Golgi complexes. Only one fibrous structure appears to be associated with a Golgi complex.The fibers are periodically cross banded with an average of 4 dense fibrils and 6 lighter fibrils per period (Fig. 1). The cross fibrils have a center to center spacing of about 7 run which appears to be the same as that of the striated rootlets of the gill cilia in this animal.


Sign in / Sign up

Export Citation Format

Share Document