Three-dimensional mid-domain predictions: geometric constraints in North American amphibian, bird, mammal and tree species richness patterns

Ecography ◽  
2008 ◽  
Vol 31 (4) ◽  
pp. 435-449 ◽  
Author(s):  
Jeremy VanDerWal ◽  
Helen T. Murphy ◽  
Jon Lovett-Doust
Ecography ◽  
2010 ◽  
Vol 33 (6) ◽  
pp. 1070-1080 ◽  
Author(s):  
Jens-Christian Svenning ◽  
Matthew C. Fitzpatrick ◽  
Signe Normand ◽  
Catherine H. Graham ◽  
Peter B. Pearman ◽  
...  

2019 ◽  
Vol 29 (3) ◽  
pp. 799-815
Author(s):  
Victor P. Zwiener ◽  
André A. Padial ◽  
Márcia C. M. Marques

2018 ◽  
Vol 9 (2) ◽  
pp. 322-330
Author(s):  
Rong Sun ◽  
Xiaojie Luo ◽  
Xiangyu Meng ◽  
Yan Wang

Abstract The streams in a watershed form a hierarchical network system. From the perspective of the river continuum, this classification system is the result of gradual increase in traffic. This study analyzed the riparian species richness, diversity and environmental factors along a six-order hierarchical mountain river in the Donghe watershed, China. A total of 34 sampling sites were sampled to study the spatial distribution of riparian plants among different stream orders. The results showed: Environmental factors among stream orders had significant differences. Among stream order, species richness showed remarkable differences. The species richness rose firstly and dropped afterwards except for tree species richness; tree species richness decreased while stream order increased. The same is true for shrub quadrat species richness. Shannon-Wiener diversity, Simpson dominance and Pielou uniformity showed significant difference among stream orders; Shannon-Wiener diversity rose firstly then dropped afterwards. For integrated environmental factors and community characteristics, we found the changes of stream orders had a significant impact on riparian habitats and riparian vegetation. Further analysis showed that riparian vegetation experienced different types and degrees of disturbance in different stream orders. This meant that a hierarchical management strategy should be applied to riparian vegetation management.


2021 ◽  
Vol 11 (1) ◽  
pp. 73-83
Author(s):  
MAHEDI HASAN LIMON ◽  
SAIDA HOSSAIN ARA ◽  
MOHAMMAD GOLAM KIBRIA

Natural regeneration is an indicator of a healthy forest, hence, understanding the influence of site factors on natural regeneration is a significant concern for ecologists. This work aimed to assess the impact of site factors on natural tree regeneration at Khadimnagar National Park (KNP). Biotic factors (tree density, tree species richness, and basal area), physical factors (elevation, canopy openness), and soil properties (bulk density, moisture content, soil pH, organic matter, sand, silt, and clay) data were investigated from 71 sample plots to examine their effects on natural regeneration density and richness in KNP. Stepwise multiple linear regression analysis was done to predict both regeneration density and regeneration richness. The results showed that soil pH (p<0.001), canopy openness (p<0.001), tree species richness (p<0.01), and bulk density (p<0.01) had a significant effect on regeneration density, explaining 42% of the total variation. Regeneration richness was driven by four factors: tree species richness (p<0.01), soil pH (p<0.001), elevation (p<0.01), and canopy openness (p<0.01) with a model that explained 60% of the total variation. This study observed that soil pH, tree species richness, and canopy openness are the main controlling factors that influenced both the density and richness of regenerating species in KNP. Therefore, these findings have implications for natural resource management, especially in selecting suitable silvicultural systems in a tropical forest under protected area management where enhanced tree cover and conservation of biodiversity are needed.


2007 ◽  
Vol 76 (3) ◽  
pp. 197-204 ◽  
Author(s):  
M. Aliabadian ◽  
C. S. Roselaar ◽  
R. Sluys ◽  
V. Nijman

In the study of diversity patterns, the Mid-domain effect (MDE), which explains gradients in diversity solely on the basis of geometric constraints, has emerged as a null-model against which other hypotheses can be tested. The effectiveness, measured by its predictive power, of these MDE models appears to depend on the size of the study area and the range-sizes of the taxa considered. Here we test the predictive power of MDE on the species richness patterns of birds and assess its effectiveness for a variety of species range sizes. We digitised distribution maps of 889 species of songbird endemic to the Palearctic, and analysed the emergent biogeographic patterns with WORLDMAP software. MDE had a predictive power of 20% when all songbirds were included. Major hotspots were located south of the area where MDE predicted the highest species-richness, and some of the observed coldspots were in the centre of the Palearctic, contradicting the predictions of the MDE. MDE had little explanatory power (3-19%) for all but the largest range sizes, whereas MDE performed equal or better for the large-ranged species (20-34%) compared to the overall model. Overall MDE did not accurate explain species-richness patterns in Palearctic songbirds. Subsets of larger-range species did not always have a larger predictive power than smaller-range species or the overall model. Despite their low predictive power, MDE models can have a role to play in explaining biogeographic patterns but other variables need to be included in the model as well.


Ecology ◽  
2019 ◽  
Vol 100 (4) ◽  
pp. e02653 ◽  
Author(s):  
Lionel R. Hertzog ◽  
Roschong Boonyarittichaikij ◽  
Daan Dekeukeleire ◽  
Stefanie R. E. de Groote ◽  
Irene M. van Schrojenstein Lantman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document