132 Differential Regulation of Osteopontin and Matrix Metalloproteinases During Diabetic Wound Healing

2004 ◽  
Vol 12 (2) ◽  
pp. A34-A34
Author(s):  
A. Sharma ◽  
A. K. Singh ◽  
J. Warren ◽  
R. K Maheshwari
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sandra Matabi Ayuk ◽  
Heidi Abrahamse ◽  
Nicolette Nadene Houreld

The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.


2008 ◽  
Vol 13 (2) ◽  
pp. A28-A48
Author(s):  
Anuj Sharma ◽  
Anoop K. Singh ◽  
James Warren ◽  
Radha K Maheshwari

2006 ◽  
Vol 126 (10) ◽  
pp. 2323-2331 ◽  
Author(s):  
Anuj Sharma ◽  
Anoop K. Singh ◽  
James Warren ◽  
Rajesh L. Thangapazham ◽  
Radha K. Maheshwari

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
CBS Lau ◽  
VKM Lau ◽  
CL Liu ◽  
PKK Lai ◽  
JCW Tam ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 634-P
Author(s):  
PIUL S. RABBANI ◽  
JOSHUA A. DAVID ◽  
DARREN L. SULTAN ◽  
ALVARO P. VILLARREAL-PONCE ◽  
JENNIFER KWONG ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (23) ◽  
pp. 2241-2253
Author(s):  
Pengju Zhang ◽  
Yuqi Jiang ◽  
Dan Liu ◽  
Yan Liu ◽  
Qinfei Ke ◽  
...  

Aim: To develop an effective strategy for increasing angiogenesis at diabetic wound sites and thereby accelerating wound healing. Materials & methods: A micropatterned nanofibrous scaffold with bioglass nanoparticles encapsulated inside coaxial fibers was prepared by electrospinning. Results: Si ions could be released in a sustained manner from the scaffolds. The hierarchical micro-/nano-structure of the scaffold was found to act as a temporary extracellular matrix to promote endothelial cell adhesion and growth. The scaffold greatly improved angiogenesis and collagen deposition at the wound site, which shortened the healing period of diabetic wounds. Conclusion: This study provides a promising therapeutic option for chronic diabetic wounds with improved angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document